РАСЧЕТ БРУСА ПРИ ВНЕЦЕНТРЕННОМ ДЕЙСТВИИ СОСРЕДОТОЧЕННОЙ СЖИМАЮЩЕЙ СИЛЫ

Методические указания к расчетно-графической работе

Составили Л. В. Кукса, Е. Е. Евдокимов

Волгоград. ВолгГАСУ. 2016

Расчет бруса при внецентренном действии сосредоточенной сжимаюрафической работе / М-во образования и науки Рос. Федерации, Волгогр. гос. архит.-строит. ун-т; сост. Л. В. Кукса, Е. Е. Евдокимов. — Электронные текстовые и графические данные (0,4 Мбайт). — Волгоград : ВолгГАСУ, 2016. — Учебное электронное издание сетевого распространения. — Систем. требования: РС 486 DX-33; Microsoft Windows XP; Internet Explorer 6.0; Adobe Reader 6.0. — Официальный сайт Волгоградского государственного архитектурно-строительного университета. Режим доступа: http://www.vgasu.ru/publishing/on-line/ — Загл. с титул. экрана.

Рассмотрены теоретические вопросы внецентренного растяжения и сжатия. Приведены задания для выполнения расчетно-графической работы. Рассмотренные в методических указаниях примеры решения задач помогут студентам выполнить расчетно-графические работы и получить навыки решения практических задач по теме «Сложное сопротивление. Внецентренное растяжение и сжатие».

Для студентов очной формы обучения строительных направлений и специальностей.

УДК 539.411(075.8) ББК 22.251.62я73

План выпуска учеб.-метод. документ. 2016 г., поз. 24

Начальник РИО М. Л. Песчаная

Минимальные систем. требования: PC 486 DX-33; Microsoft Windows XP; Internet Explorer 6.0; Adobe Reader 6.0

Подписано в свет 29.08.2016. Гарнитура «Таймс». Уч.-изд. л. 1,0. Объем данных 0,4 Мбайт

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный архитектурно-строительный университет» Редакционно-издательский отдел 400074, Волгоград, ул. Академическая, 1 http://www.vgasu.ru, info@vgasu.ru

ОГЛАВЛЕНИЕ

2. Определение внутренних усилий и нормальных напряжений 4 3. Определение положения нейтральной линии 7 4. Построение ядра сечения 14 5. Пример расчета бруса при внецентренном действии сосредоточенной сжимающей силы 17 6. Варианты заданий к расчетно-графической работе 27 7. Контрольные вопросы и задания 35 Библиографический список 39 Приложение 40	1. Основные понятия	4
4. Построение ядра сечения 14 5. Пример расчета бруса при внецентренном действии сосредоточенной сжимающей силы 17 6. Варианты заданий к расчетно-графической работе 27 7. Контрольные вопросы и задания 35 Библиографический список 39	2. Определение внутренних усилий и нормальных напряжений	4
5. Пример расчета бруса при внецентренном действии сосредоточенной сжимающей силы 17 6. Варианты заданий к расчетно-графической работе 27 7. Контрольные вопросы и задания 35 Библиографический список 39	3. Определение положения нейтральной линии	7
сжимающей силы	4. Построение ядра сечения	14
6. Варианты заданий к расчетно-графической работе «Расчет бруса при внецентренном действии сосредоточенной сжимающей силы»	5. Пример расчета бруса при внецентренном действии сосредоточенной	
«Расчет бруса при внецентренном действии сосредоточенной сжимающей силы»	сжимающей силы	17
7. Контрольные вопросы и задания 35 Библиографический список 39	6. Варианты заданий к расчетно-графической работе	
Библиографический список	«Расчет бруса при внецентренном действии сосредоточенной сжимающей силы»	27
1 1	7. Контрольные вопросы и задания	35
Приложение	Библиографический список	39
	Приложение	40

1. ОСНОВНЫЕ ПОНЯТИЯ

Сложным сопротивлением называется такой вид сопротивления, когда имеет место комбинация простейших деформаций: растяжение и сжатие, сдвиг, кручение и изгиб. При расчетах на сложное сопротивление применяется принцип независимости действия сил, который справедлив в том случае, если деформации малы, упругие и выполняется закон Гука. При этом действие одной из сил не вызывает существенного изменения в расположении других сил. Сначала определяются напряжения и деформации от действия отдельных силовых факторов, а затем находится полное напряжение и деформация как геометрическая или алгебраическая сумма напряжений и деформаций, определенных от каждой силы в отдельности.

На практике имеет место различные комбинации простейших видов деформаций и соответственно различные случаи сложного сопротивления: косой изгиб, внецентренное растяжение (сжатие), изгиб с кручением. Комбинация всех простейших деформаций: растяжения (сжатия), кручения, сдвига и изгиба — называется общим случаем сложного сопротивления.

Внецентренным растяжением или сжатием называется случай сложного сопротивления, возникающий в том случае, когда линия действия силы не совпадает с геометрической осью бруса, при этом она параллельна геометрической оси бруса (рис. 1, a).

Можно также дать следующее определение внецентренному растяжению или сжатию: это случай сложного сопротивления, при котором в поперечном сечении бруса одновременно действуют продольная сила и изгибающий момент. Момент обычно представляется в виде двух составляющих, действующих в двух главных плоскостях инерции.

2. ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ И НОРМАЛЬНЫХ НАПРЯЖЕНИЙ

Для определения внутренних усилий воспользуемся методом сечений. Мысленно проводим плоскость на расстоянии z от начала координат (рис. $1, \delta$), правую часть отбрасываем, а левую оставляем в рассмотрении под действием заданной силы F, координаты точки приложения которой известны (x_F и y_F) и внутренних усилий N_z , M_x и M_y . Индексы при М показывают, относительно какой оси вращает момент. На рис. 1 a, δ оси Ox и Oy являются главными центральными осями инерции, а Oz — геометрическая ось бруса.

Составим уравнения равновесия:

$$\sum z = 0; F - N_z = 0; N_z = F;$$

$$\sum M_x = 0; F \cdot y_F - M_x = 0; M_x = F \cdot y_F;$$

$$\sum M_y = 0; F \cdot x_F - M_y = 0; M_y = F \cdot x_F.$$
(1)

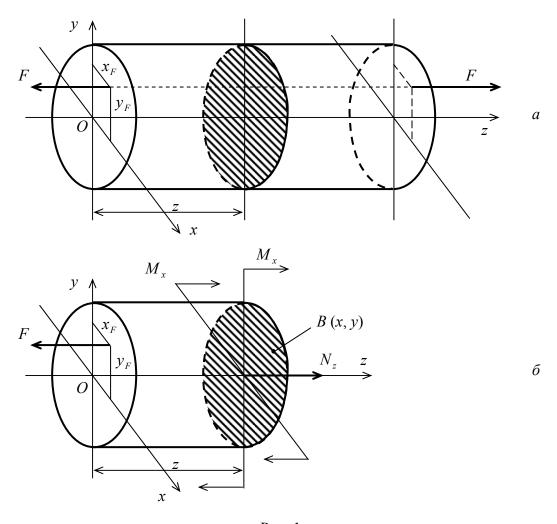


Рис. 1

Остальные три уравнения равновесия не рассматриваются, так как эти уравнения тождественно равны нулю.

Рассмотрим напряженное состояние, возникающее в точке B с координатами x и y. По граням выделенного элемента действуют нормальные напряжения от изгибающих моментов $M_x - \sigma_{M_x}$, $M_y - \sigma_{M_y}$ и от продольной силы $N_z - \sigma_{N_z}$ (рис. 2).

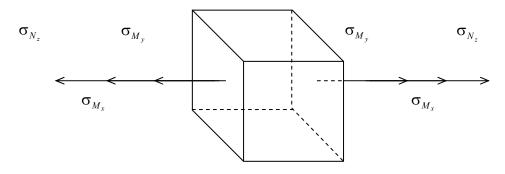


Рис. 2

Воспользуемся принципом независимости действия сил и определим результирующее напряжение как алгебраическую сумму напряжений, полученных от соответствующих внутренних усилий.

$$\sigma = \sigma_{N_z} + \sigma_{M_x} + \sigma_{M_y} \,. \tag{2}$$

Составляющие напряжения определим по формулам известным из первой части курса, где рассмотрены простейшие виды деформаций:

$$\sigma_{N_z} = \frac{N_z}{A},\tag{3}$$

$$\sigma_{M_x} = \frac{M_x \cdot y}{I_x},\tag{4}$$

$$\sigma_{M_y} = \frac{M_y \cdot x}{I_y},\tag{5}$$

где A — площадь поперечного сечения бруса; x, y — координаты точки B; I_x , I_y — осевые моменты инерции.

Рассматривая совместно уравнения (3—5) и уравнение (2) получим формулу для определений нормальных напряжений в следующем виде

$$\sigma = \frac{N_z}{A} + \frac{M_y \cdot x}{I_y} + \frac{M_x \cdot y}{I_x}.$$
 (6)

Знак напряжений определяется по знаку деформаций: для растяжения "+", для сжатия "-".

Если в формулу (6) подставить значение внутренних усилий из формул (1) то получим:

$$\sigma = \frac{F}{A} + \frac{F \cdot x_F \cdot x}{I_v} + \frac{F \cdot y_F \cdot y}{I_x}. \tag{7}$$

Вынося за скобку $\frac{F}{A}$ и имея ввиду, что

$$\frac{I_x}{A} = i_x^2, \ \frac{I_y}{A} = i_y^2,$$

где $i_{\scriptscriptstyle x}$ и $i_{\scriptscriptstyle y}$ — радиусы инерции, будем иметь

$$\sigma = \frac{F}{A} \left(1 + \frac{x_F \cdot x}{i_y^2} + \frac{y_F \cdot y}{i_x^2} \right). \tag{8}$$

Получен другой вид формулы для определения нормальных напряжений при внецентренном растяжении или сжатии. Формулы (7) и (8) используются при выполнении расчетов на внецентренное растяжение или сжатие.

3. ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ НЕЙТРАЛЬНОЙ ЛИНИИ

Рассмотрим поперечное сечение, показанное на рис. 3. По определению, на нейтральной линии напряжения и деформации равны нулю, т. е.

$$\sigma = \frac{F}{A} \left(1 + \frac{x_F \cdot x}{i_y^2} + \frac{y_F \cdot y}{i_x^2} \right) = 0.$$
 (9)

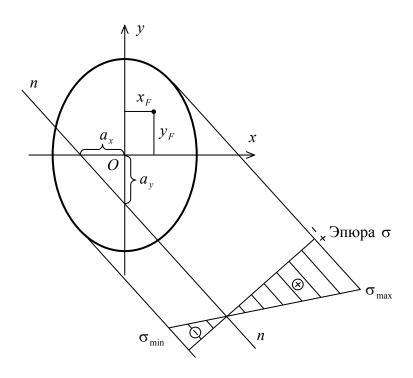


Рис. 3

Так как $\frac{F}{A} \neq 0$ (если F = 0, отсутствует случай внецентренного растяжения или сжатия), приравниваем к нулю выражение, стоящее в скобках формулы (9), имеем

$$1 + \frac{x_F \cdot x}{i_y^2} + \frac{y_F \cdot y}{i_x^2} = 0,$$

или

$$\frac{x}{-\frac{i_y^2}{x_F}} + \frac{y}{-\frac{i_x^2}{y_F}} = 1. \tag{10}$$

Приняв

$$a_{x} = -\frac{i_{y}^{2}}{x_{E}}, a_{y} = -\frac{i_{x}^{2}}{y_{E}}, \tag{11}$$

Имеем

$$\frac{x}{a_x} + \frac{y}{a_y} = 1. \tag{12}$$

Получено уравнение нейтральной линии в отрезках координат. Отрезки, отсекаемые нейтральной линией n-n показаны на рис. 3.

Формула для определения нормальных напряжений (7 и 8) в координатах σ , x, y представляет собой уравнение плоскости не проходящей через начало координат, т. е. в общем случае эпюра σ должна иметь пространственный вид. Если провести плоскость перпендикулярно нейтральной линии через центр тяжести поперечного сечения, то в пересечении ее с плоскостью, описываемой формулой для нормальных напряжений, получим прямую линию. Эпюра σ в этом случае будет иметь вид, показанный на рис. 3. Из рассмотрения рис. 3 можно сделать очень важный вывод о том, что экстремальные значения напряжений будут в точках, наиболее удаленных от нейтральной линии.

Возможны три случая расположения нейтральной по отношению к плоскости поперечного сечения:

- 1) нейтральная линия пересекает плоскость поперечного сечения (рис. 3);
- 2) нейтральная линия находится за пределами поперечного сечения (рис. 4, a);
 - 3) нейтральная линия касается поперечного сечения (рис. 4, δ).

Рассмотрение формул для определения отрезков координат (11) позволяет сделать ряд выводов. Отрезки, отсекаемые нейтральной линией от координат Ox и Oy противоположны по знаку координатам точки приложения силы. Отрезки a_x и a_y обратно пропорциональны координатам точки приложения силы x_F и y_F , т. е. с увеличением x_F и y_F уменьшаются отрезки a_x и a_y , с уменьшением x_F и y_F увеличиваются отрезки a_x и a_y . Необходимо помнить, что в случае плоского изгиба нейтральная линия проходит через центр тяжести поперечного сечения, а в случае центрального сжатия $x_F = 0$, $y_F = 0$, т. е. точка приложения силы находится в центре тяжести поперечного сечения. В общем случае внецентренного растяжения или сжатия при произвольных координатах точки приложения силы x_F и y_F в центре тяжести поперечного сечения (x = 0, y = 0)

$$\sigma = \frac{F}{A},\tag{13}$$

Очевидно, что такое же значение напряжения будет при центральном растяжении, сжатии.

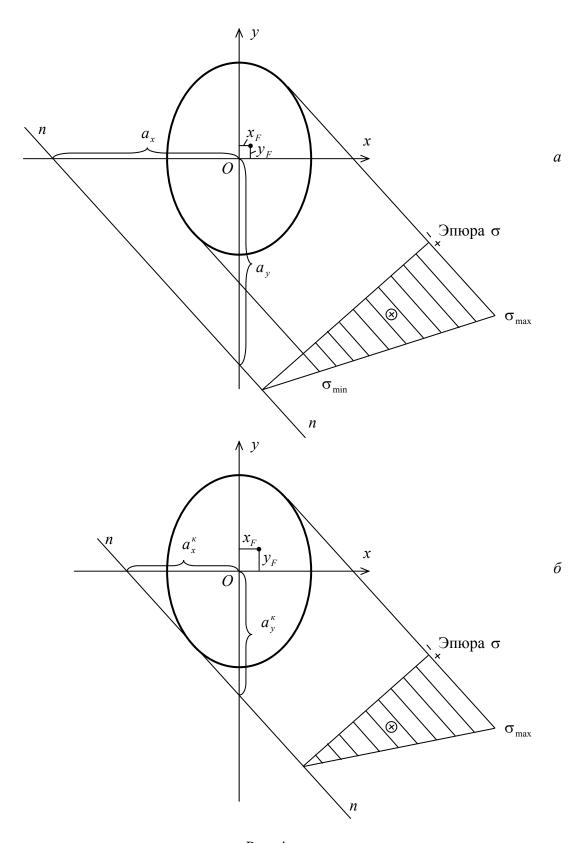
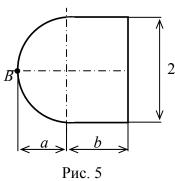


Рис. 4

Пример 1. Стержень, поперечное сечение которого изображено на рис. 5, сжимается продольной силой F, приложенной в точке B. Требуется определить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив эти напряжения через F и размеры сечения a=4 см, b=5 см.



Решение

Для заданного сечения, состоящего из двух фигур (полукруг I и прямоугольник 2 (рис. 6)) необходимо определить положение главных центральных осей инерции. Известно, что одной из главных центральных осей инерции является ось симметрии. Для определения 2-й главной центральной оси необходимо найти положение точки центра тяжести плоской фигуры, расположенной на оси симметрии. Предварительно вычислим площади и координаты центров тяжестей фигур в произвольных осях x, y_C (рис. 6)

$$A_1 = \frac{\pi d^2}{8} = \frac{\pi (2a)^2}{8} = \frac{3,14 \cdot (2 \cdot 4)^2}{8} = 25,12 \text{ cm}^2;$$

 $x_1 = a - x_C,$

где x_{C_1} определяется по формуле, приведенной в приложении I настоящего пособия

$$x_{C1} = \frac{2d}{3\pi} = \frac{2 \cdot 2a}{3\pi} = \frac{4 \cdot 4}{3 \cdot 3,14} = 1,7 \text{ cm};$$

$$x_1 = a - x_{C_1} = 4 - 1,7 = 2,3 \text{ cm}; y_1 = 0;$$

$$A_2 = b2a = 5 \cdot 2 \cdot 4 = 40 \text{ cm}^2;$$

$$x_2 = a + \frac{b}{2} = 4 + \frac{5}{2} = 6,5 \text{ cm}; y_2 = 0.$$

Центр тяжести всего сечения находится на оси симметрии, следовательно $y_{\scriptscriptstyle C}=0$, а для определения $x_{\scriptscriptstyle C}$ воспользуемся формулой:

$$x_{c} = \frac{\sum_{i=1}^{2} S_{y_{i}}}{\sum_{i=1}^{2} A_{i}}.$$
(14)

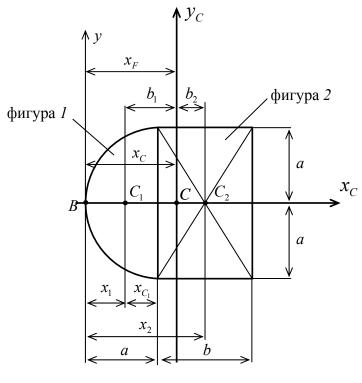


Рис. 6

При вычислении координат центра тяжести воспользуемся табл. 1.

Таблица 1

№	A_i ,	X_i ,	$S_{y_i} = A_i x_i,$	b_i ,	$S_{y_{Ci}} = A_i b_i,$
фигуры	CM ²	СМ	CM ³	СМ	CM ³
1	25,12	2,3	57,8	-2,58	-64,8
2	40	6,5	260	1,62	64,8
\sum	65,12		317,8		0

Имеем координаты т. C — центра тяжести заданного сечения:

$$x_c = \frac{\sum_{i=1}^2 S_{y_i}}{\sum_{i=1}^2 A_i} = \frac{317.8}{65.12} = 4.88 \text{ cm}, y_c = 0.$$

Проведем центральные оси x_c , y_c и определим координаты центров тяжестей фигур, составляющих заданное сечение, в этих осях (см. рис. 6):

$$b_1 = -(x_C - x_1) = -(4,88 - 2,3) = -2,58$$
 cm;

$$b_2 = x_2 - x_C = 6,5 - 4,88 = 1,62$$
 cm.

Для проверки правильности определения положения центра тяжести вычислим статический момент $S_{y_i} = A_i b_i$ относительно центральной оси y_c , который должен быть равен нулю (см. табл. 1).

Определим осевые моменты инерции фигур, составляющих сечение, по формулам, указанным в приложении I, относительно собственных центральных осей:

$$I_{x_1} = \frac{\pi d^4}{128} = \frac{\pi (2a)^4}{128} = \frac{3,14 \cdot (2 \cdot 4)^4}{128} = 100,48 \text{ cm}^4,$$

$$I_{y_1} = 0,11r^4 = 0,11a^4 = 0,11 \cdot 4^4 = 72,51 \text{ cm}^4,$$

$$I_{x_2} = \frac{bh^3}{12} = \frac{b(2a)^3}{12} = \frac{2 \cdot (2 \cdot 4)^3}{12} = 213,33 \text{ cm}^4,$$

$$I_{y_2} = \frac{hb^3}{12} = \frac{2ab^3}{12} = \frac{2 \cdot 4 \cdot 5^3}{12} = 83,33 \text{ cm}^4.$$

Для определения осевых моментов инерции всего сечения относительно центральных осей x_c и y_c воспользуемся формулами

$$I_{x_c} = \sum_{i=1}^{2} (I_{x_i} + a_i^2 A_i); \ I_{y_c} = \sum_{i=1}^{2} (I_{y_i} + b_i^2 A_i),$$
 (15)

где $a_1 = a_2 = 0$ (учитывая, что оси x каждой из фигур совпадают с осью симметрии x_C), $b_1 = -2,58$ см, $b_2 = 1,62$ см (см. табл. 1).

Расчет значений выполним с помощью табл. 2.

Таблица 2

<u>№</u> фигуры	I_{x_i} , cm ⁴	I_{y_i} , cm ⁴	$b_i^2 A_i$, cm ⁴	$I_{y_i} + b_i^2 A_i, \operatorname{cm}^4$
1	100,48	72,51	167,08	239,59
2	213,33	83,33	104,98	188,31
\sum	313,81	155,84	272,06	427,9

Имеем:

$$I_{x_C} = \sum_{1}^{2} I_{x_i} = 313,81 \text{ cm}^4,$$

$$I_{y_c} = \sum_{i=1}^{2} (I_{y_i} + b_i^2 A_i) = 427.9 \text{ cm}^4.$$

Определим квадраты радиусов инерции по формулам:

$$i_{x_C}^2 = \frac{I_{x_C}}{A}, i_{y_C}^2 = \frac{I_{y_C}}{A},$$

где
$$A = \sum_{i=1}^{2} A_i = 65,12$$
 см².

Получим:

$$i_{x_C}^2 = \frac{I_{x_C}}{A} = \frac{313,81}{65,12} = 4,83 \text{ cm}^2,$$

$$i_{y_c}^2 = \frac{I_{y_c}}{A} = \frac{427.9}{65.12} = 6.58 \text{ cm}^2.$$

Для построения нейтральной линии воспользуемся формулами (11)

$$a_x = -\frac{i_y^2}{x_F}, a_y = -\frac{i_x^2}{y_F},$$

где $x_F = -x_C = -4,88$ см, $y_F = 0$ — координаты точки приложения силы F (см. рис. 6).

Имеем:

$$a_x = -\frac{i_y^2}{x_E} = -\frac{6.58}{-4.88} = 1.35 \text{ cm},$$

$$a_y = -\frac{i_x^2}{y_E} = -\frac{2,20}{0} = \infty$$

следовательно, нейтральная линия параллельна оси y_c .

На положительной полуоси x_c от центра тяжести С откладываем отрезок $a_x = 1,35$ см и строим нейтральную линию HO (рис. 7, a).

Наибольшее растягивающее и наибольшее сжимающее напряжения возникают в точках поперечного сечения, наиболее удаленных от нейтральной линии: в точке B — наибольшее сжимающее напряжение σ_{\min} , в точке D — наибольшее растягивающее напряжение σ_{\max} . Координаты точки B (точки приложения силы F) уже определены:

$$x_R = x_F = -4,88$$
 cm, $y_R = y_F = 0$.

Вычислим координаты точки D (рис. 7 a):

$$x_D = a + b - x_B = 4 + 5 - 4,88 = 4,12$$
 cm, $y_D = 0$.

Определим σ_{max} и σ_{min} по формуле (8):

$$\sigma_{\text{max}} = \sigma_D = -\frac{F}{A} \left(1 + \frac{x_F x_B}{i_{y_C}^2} \right) = -\frac{F}{65,12 \cdot 10^{-4}} \left(1 + \frac{(-4,88) \cdot 4,12}{6,58} \right) = 315,44F,$$

$$\sigma_{\min} = \sigma_B = -\frac{F}{A} \left(1 + \frac{x_F x_A}{i_{y_C}^2} \right) = -\frac{F}{65,12 \cdot 10^{-4}} \left(1 + \frac{(-4,88) \cdot (-4,88)}{6,58} \right) = -709,08F.$$

Получены значения наибольшего растягивающего и наибольшего сжимающего напряжений, выраженные через F. Эпюра нормальных напряжений показана на рис. 7, 6.

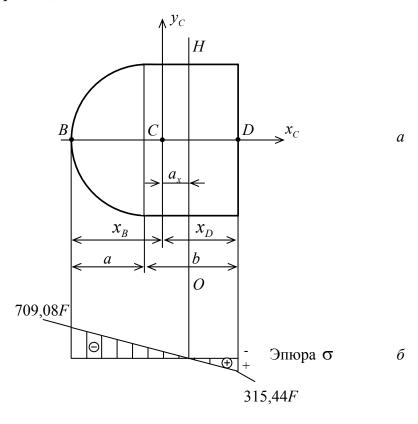


Рис. 7

4. ПОСТРОЕНИЕ ЯДРА СЕЧЕНИЯ

Как видно из рис. З в случае внецентренного растяжения или сжатия знак нормальных напряжений может быть как положительный, так и отрицательный. На практике некоторые из применяемых материалов (хрупкие материалы), например бетон, кирпичная кладка различно сопротивляются действию растягивающих и сжимающих напряжений. Сопротивляемость сжатию существенно превосходит сопротивляемость растяжению. Такие материалы могут работать лишь в элементах конструкций, в которых не возникают растягивающие напряжения.

Поэтому при внеценренном сжатии представляет интерес определение некоторой центральной области в поперечном сечении, при приложении силы в которой во всем поперечном сечении должны возникать напряжения одного знака. Эта область называется ядром сечения. Дадим определение ядра сечения.

Ядром сечения называется некоторая область, расположенная вблизи центра тяжести и обладающая тем свойством, что если точка приложения силы находится в пределах ядра сечения, во всем поперечном сечении возникают напряжения одного знака. Напряжения одного знака в поперечном

сечении возникают в том случае, когда нейтральная линия касается контура поперечного сечения или располагается за пределами контура поперечного сечения. Введем понятие контура ядра сечения.

Контуром ядра сечения называется геометрическое место точек приложения силы, при которых нейтральная линия обкатывается по контуру поперечного сечения.

Введем следующие обозначения:

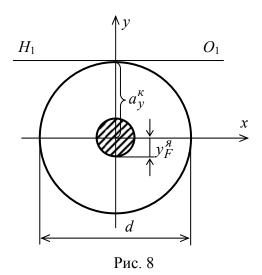
 a_x^{κ} и a_y^{κ} — отрезки, отсекаемые нейтральной линией от осей Ox и Oy, соответственно, когда она касается контура поперечного сечения;

 x_F^s и y_F^s — координаты точки приложения силы, при которых нейтральная линия касается контура поперечного сечения

Если известны a_x^{κ} , a_y^{κ} , i_x^2 , i_y^2 , то из формул (11), получим

$$x_F^{g} = -\frac{i_y^2}{a_x^{\kappa}}, \ y_F^{g} = -\frac{i_x^2}{a_y^{\kappa}}.$$
 (16)

Получены формулы для определения положения контура ядра сечения. **Пример 2.** Построить ядро сечения для круга с диаметром d (рис. 8).



Решение

Рассмотрим положение нейтральной линии H_1O_1 , когда она касается контура круга. Имеем

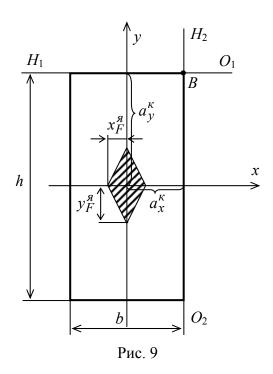
$$i_x^2 = i_y^2 = \frac{I_x}{A} = \frac{\frac{\pi d^4}{64}}{\frac{\pi d^2}{4}} = \frac{d^2}{16};$$

$$a_y^{\kappa} = \frac{d}{2}; a_x^{\kappa} = \infty;$$

$$y_F^{s} = -\frac{i_x^2}{a_y^{\kappa}} = -\frac{\frac{d^2}{16}}{\frac{d}{2}} = -\frac{d}{8}; x_F^{s} = -\frac{i_y^2}{a_x^{\kappa}} = -\frac{\frac{d^2}{16}}{\infty} = 0.$$

Такое же значение будет получено для круга для любых других случаев, когда нейтральная линия касается окружности. Следовательно, ядро сечения можно представить в виде круга с диаметром $\frac{d}{d}$ (см. рис. 8).

Пример 3. Построить ядро сечения для прямоугольника со сторонами b и h (рис. 9).



Решение

Для построения ядра сечения рассмотрим положение нейтральной линии H_1O_1 , когда она касается контура прямоугольника. Определим координату точки приложения силы

$$i_x^2 = \frac{I_x}{A} = \frac{\frac{bh^3}{12}}{bh} = \frac{h^2}{12}; a_y^{\kappa} = \frac{h}{2};$$

$$y_F^n = -\frac{i_x^2}{a_y^k} = -\frac{\frac{h^2}{12}}{\frac{h}{2}} = -\frac{h}{6}.$$

Затем рассмотрим положение нейтральной линии $H_2 O_2$

$$i_{y}^{2} = \frac{I_{y}}{A} = \frac{\frac{b^{3}h}{12}}{bh} = \frac{b^{2}}{12}; a_{x}^{\kappa} = \frac{b}{2};$$

$$x_{F}^{g} = -\frac{i_{y}^{2}}{a_{x}^{\kappa}} = -\frac{\frac{b^{2}}{12}}{\frac{b}{2}} = -\frac{b}{6}.$$

При переходе нейтральной линии из положения H_1O_1 в положение H_2O_2 нейтральная линия проходит через одну и туже точку B с координатами x_B и y_B . Подставим эти значения в уравнение нейтральной линии (12), получим

$$\frac{x_{B}}{-\frac{i_{y}^{2}}{x_{F}}} + \frac{y_{B}}{-\frac{i_{x}^{2}}{y_{F}}} = 1.$$

Представим это уравнение в следующем виде

$$\frac{x_F}{-\frac{i_y^2}{x_B}} + \frac{y_F}{-\frac{i_x^2}{y_B}} = 1.$$

Следовательно, при перемещении H_1O_1 в положение H_2O_2 точка приложения силы перемещается по прямой. Используя условие симметрии построим ядро сечения (см. рис. 9).

5. ПРИМЕР РАСЧЕТ БРУСА ПРИ ВНЕЦЕНТРЕННОМ ДЕЙСТВИИ СОСРЕДОТОЧЕННОЙ СЖИМАЮЩЕЙ СИЛЫ

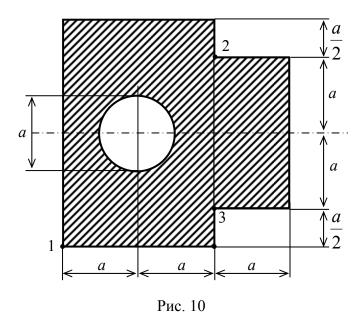
Для бруса со сложным поперечным сечением с известными размерами (a=28 см) (рис. 10), изготовленного из бетона (R=3,3 МПа, коэффициент условия работы $\gamma=0,85$) необходимо:

- 1. Определить положение центра тяжести, положение главных центральных осей инерции, главные центральные моменты инерции, главные радиусы инерции.
 - 2. Построить ядро сечения.
- 3. Определить допускаемую силу [F] из условия прочности по первому предельному состоянию.
- 4. Исследовать изменение напряжений в поперечном сечении при перемещении силы F вдоль одной из главных осей для 5-и случаев:
- 1) сила приложена в точке пресечения положительной полуоси с контуром поперечного сечения;
- 2) сила приложена в точке пересечения положительной полуоси с контуром ядра сечения;
 - 3) сила приложена в центре тяжести;

- 4) сила приложена в точке пересечения отрицательной полуоси с контуром ядра сечения;
- 5) сила приложена в точке пересечения отрицательной полуоси с контуром поперечного сечения.

Построить эпюры напряжений для каждого случая нагружения.

5. Для указанных точек в поперечном сечении приложения силы построить положения нейтральной оси.



Решение

1. Определение положения центра тяжести, главных центральных моментов инерции, главных радиусов инерции

Пронумеруем фигуры, составляющие заданное поперечное сечение (рис. 11): прямоугольник с размерами $3a \times 2a$ — I, прямоугольник с размерами $2a \times a$ — II, круг диаметром a — III.

Определим площади всех фигур:

$$A_1 = 2a \cdot 3a = 6a^2 = 6 \cdot 28^2 = 4704 \text{ cm}^2;$$

 $A_2 = 2a \cdot a = 2a^2 = 2 \cdot 28^2 = 1568 \text{ cm}^2;$
 $A_3 = \frac{\pi a^2}{4} = \frac{3,14 \cdot 28^2}{4} = 615,4 \text{ cm}^2;$

При вычислении координат центра тяжести удобно пользоваться табл. 3.

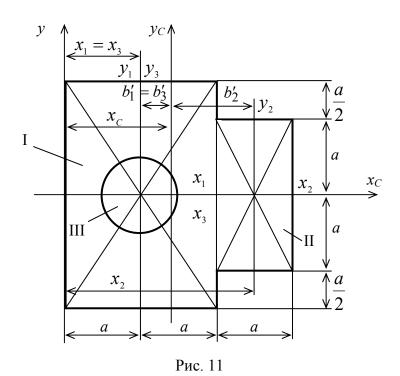
Таблица 3

№№ п/п	A_i , cm ²	x_i , cm	$S_{y_i} = A_i \cdot x_i, \mathrm{cm}^3$
1	4704	28	131712
2	1568	70	109760
3	615,4	28	17232,2
\sum	5657		224240

Координаты центра тяжести всей фигуры вычислим относительно произвольных координатных осей x и y. Будем считать, что ось Oy совпадает с левой гранью прямоугольника I, а ос Ox с осью симметрии сечения (рис. 11). Тогда

$$x_1 = x_3 = a = 28 \text{ cm}, x_2 = 2,5a = 2,5 \cdot 28 = 7 \text{ cm},$$

 $y_1 = y_2 = y_3 = 0.$



Полученные значения координат x_i отдельных фигур и вычисленные значения статических моментов S_{y_i} вписываем в табл. 3.

Вычисляем координаты центра тяжести всей фигуры по формулам:

$$x_C = \frac{\sum S_{y_i}}{\sum A_i} = \frac{224240}{5657} = 39,6 \text{ cm};$$

$$y_C = \frac{\sum S_{x_i}}{\sum A_i} = 0.$$

Проведем центральные оси для всей фигуры x_c и y_c (см. рис. 11). Определим расстояние между центральными осями всей фигуры и центральными осями каждой из фигур:

$$b'_1 = b'_3 = x_1 - x_C = 28 - 39, 6 = -11, 6 \text{ cm}; b'_2 = x_2 - x_C = 70 - 39, 6 = 30, 4 \text{ cm};$$

 $a_1 = a_2 = a_3 = 0.$

Определим осевые моменты инерции каждой фигуры:

$$I_{x_1} = \frac{b_1 h_1^3}{12} = \frac{2a \cdot (3a)^3}{12} = \frac{54a^4}{12} = 4,5a^4 = 4,5 \cdot 28^4 = 2,77 \cdot 10^6 \text{ cm}^4;$$

$$I_{x_2} = \frac{b_2 h_2^3}{12} = \frac{a \cdot (2a)^3}{12} = \frac{8a^4}{12} = \frac{2}{3}a^4 = \frac{2}{3}28^4 = 4,098 \cdot 10^5 \text{ cm}^4;$$

$$I_{x_3} = \frac{\pi d^4}{64} = \frac{\pi a^4}{64} = \frac{3,14 \cdot 28^4}{64} = 3,02 \cdot 10^4 \text{ cm}^4;$$

$$I_{y_1} = \frac{h_1 b_1^3}{12} = \frac{3a \cdot (2a)^3}{12} = 2a^4 = 2 \cdot 28^4 = 1,23 \cdot 10^6 \text{ cm}^4;$$

$$I_{y_2} = \frac{h_2 b_2^3}{12} = \frac{2a \cdot a^3}{12} = \frac{1}{6}a^4 = \frac{1}{6} \cdot 28^4 = 1,024 \cdot 10^5 \text{ cm}^4;$$

$$I_{y_3} = I_{x_3} = 3,02 \cdot 10^4 \text{ cm}^4;$$

Для вычисления центральных осевых моментов инерции всего заданного сечения I_{x_c} и I_{y_c} составим табл. 4. Как заполняются графы этой таблицы, видно из их наименования.

Таблица 4

№	I_{x_i} ,	I_{y_i} ,	A_i ,	a_i ,	b_i' ,	$a_i^2 \cdot A_i$,	$\left(b_i'\right)^2\cdot A_i$,	$I_{x_i} + a_i^2 A_i,$	$I_{y_i} + \left(b_i'\right)^2 A_i,$
п/п	CM ⁴	CM ⁴	CM ²	СМ	СМ	CM ⁴	CM ⁴	CM ⁴	CM ⁴
1			4704	0	-11,6	0	$6,33 \cdot 10^5$		$1,863 \cdot 10^6$
2	$4,098 \cdot 10^5$	$1,024 \cdot 10^5$	1568	0	30,4	0	$1,45 \cdot 10^6$	$4,098 \cdot 10^5$	$1,551 \cdot 10^6$
3			615,4	0	-11,6	0	$8,28 \cdot 10^4$		1,13·10 ⁵
Σ	$3,15\cdot10^{6}$	$1,302 \cdot 10^6$	5657			0	$2,0\cdot 10^6$	$3,15 \cdot 10^6$	$3,30\cdot10^{6}$

Из таблицы получим

$$I_{x_c} = \sum_{i=1}^{3} (I_{x_i} + a_i^2 A_i) = 3,15 \cdot 10^6 \text{ cm}^4;$$

$$I_{y_c} = \sum_{i=1}^{3} (I_{y_i} + (b'_i)^2 A_i) = 3.30 \cdot 10^6 \text{ cm}^4.$$

При заполнении последних строк табл. 3 и табл. 4 необходимо учитывать, что 3-я фигура представляет собой круглый вырез, и, следовательно, при суммировании значения геометрических характеристик этой фигуры вычитаются.

Определим главные радиусы инерции

$$i_{x_C} = \sqrt{\frac{I_{x_C}}{A}} = \sqrt{\frac{3,15 \cdot 10^6}{5657}} = \sqrt{557} = 23,6 \text{ cm}; i_{x_C}^2 = 557 \text{ cm}^2;$$

$$i_{y_C} = \sqrt{\frac{I_{y_C}}{A}} = \sqrt{\frac{3,30 \cdot 10^6}{5657}} = \sqrt{582} = 24,1 \text{ cm}; i_{y_C}^2 = 582 \text{ cm}^2.$$

2. Построение ядра сечения (рис. 12).

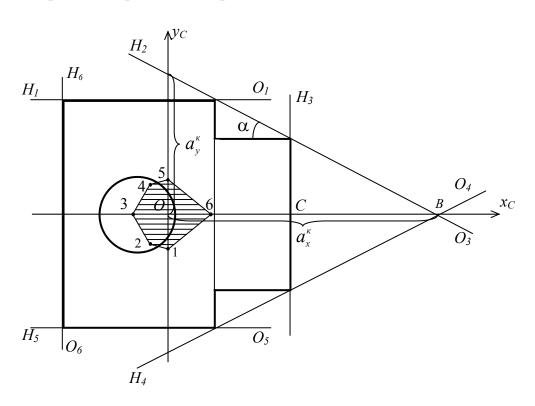


Рис. 12

Рассмотри шесть положений нейтральной линии и воспользуемся формулами (16).

2.1. Положение нейтральной линии H_1O_1

$$a_y^{\kappa} = 1.5a = 1.5 \cdot 28 = 42$$
 cm;

$$a_x^{\kappa} = \infty$$
; $x_{F(1)}^{s} = 0$; $y_{F(1)}^{s} = -\frac{557}{42} = -13.3$ cm.

Определено положение т. 1

2.2. Положение нейтральной линии $H_{2}O_{2}$

$$tg\alpha = \frac{a}{2} = 0.5; OB = OC + BC = a_x^{\kappa};$$

$$OC = 3a - x_C = 3 \cdot 28 - 39.6 = 44.4 \text{ cm};$$

$$\frac{a}{BC} = \text{tg}\alpha$$
; $BC = \frac{a}{\text{tg}\alpha} = \frac{28}{0.5} = 56$ cm;

$$a_x^{\kappa} = 100,4 \text{ cm}; \ a_y^{\kappa} = \frac{a_x^{\kappa}}{\text{ctg}\alpha} = \frac{100,4}{2} = 50,2 \text{ cm}; \frac{a_y^{\kappa}}{a_x^{\kappa}} = \text{tg}\alpha;$$

$$y_{F(2)}^{s} = -\frac{557}{50,2} = -11,1 \text{ cm}; x_{F(2)}^{s} = -\frac{582}{100,4} = -5,80 \text{ cm}.$$

Определено положение т. 2.

2.3. Положение нейтральной линии H_3O_3

$$a_{v}^{\kappa} = \infty$$
; $a_{x}^{\kappa} = OC = 44,4$;

$$x_{F(3)}^{s} = -\frac{582}{44.4} = -13.1 \text{ cm}; y_{F(3)}^{s} = 0.$$

Определено положение т. 3.

2.4. Положение нейтральной линии H_6O_6

$$a_y^{\kappa} = \infty$$
; $y_{F(6)}^{\pi} = 0$; $a_x^{\kappa} = -39.6$ cm; $x_{F(6)}^{\pi} = -\frac{582}{(-39.6)} = 14.7$ cm.

Определено положение т. 6. Вследствие симметрии точки 4 и 5 строятся симметрично точкам 2 и 1.

3. Определение допустимой силы [F]

Из условия прочности при внецентренном растяжении или сжатии

$$\sigma_{\text{pac}_{4}} = \left|\sigma_{\text{max}}\right| = \frac{F}{A} \left(1 + \frac{y_F y}{i_{x_C}^2} + \frac{x_F x}{i_{y_C}^2}\right) \le \gamma R. \tag{17}$$

имеем

$$[F] \leq \frac{\gamma RA}{\left(1 + \frac{y_F y}{i_{x_C}^2} + \frac{x_F x}{i_{y_C}^2}\right)}.$$

$$(18)$$

Определение допустимого значения силы будем выполнять из условия: напряжения во всем поперечном сечении должны быть одного знака. В этом случае точка приложения силы должна быть в пределах ядра сечения. Рассмотрим последовательно положения точки приложения силы на контуре ядра сечения. Вследствие симметрии достаточно рассмотреть точки 1, 2, 3 и 6 (см. рис. 12).

1-я точка:

$$y_F = -y_{F(1)}^s = -13.3$$
 cm;

Наиболее удаленная точка от нейтральной линии в этом случае будет точка с координатами

$$x = 0$$
 cm, $y = -42$ cm.

Тогда по формуле (18)

$$[F] = \frac{0.85 \cdot 3.3 \cdot 10^6 \cdot 5657 \cdot 10^{-4}}{\left(1 + \frac{-13.3 \cdot (-42)}{557}\right)} = 792 \cdot 10^3 \text{ H} = 792 \text{ kH}.$$

2-я точка:

$$y_F = -y_F^n = -11,1 \text{ cm}; x_F = -x_F^n = -5,8 \text{ cm};$$

Наиболее удаленная точка от нейтральной линии в этом случае будет точка с координатами

$$x = -39.6$$
 cm, $y = -42$ cm.

$$[F] = \frac{0.85 \cdot 3.3 \cdot 10^{6} \cdot 5657 \cdot 10^{-4}}{1 + \frac{(-11.1) \cdot (-42)}{557} + \frac{(-5.8) \cdot (-39.6)}{582}} = 711 \cdot 10^{3} \text{ H} = 711 \text{ kH}.$$

3-я точка:
$$y_F = 0$$
; $x_F = x_F^g = -13,1$ см.

Наиболее удаленная точка от нейтральной линии в этом случае будет точка с координатами

$$x = -39,6$$
 cm, $y = 0$.

$$[F] = \frac{0.85 \cdot 3.3 \cdot 10^6 \cdot 5657 \cdot 10^{-4}}{1 + \frac{-13.3 \cdot (-39.6)}{582}} = 839 \cdot 10^3 \text{ H} = 839 \text{ kH}.$$

6-ая точка: $x_F = x_F^s = 14,7$ см;y=0.

Наиболее удаленная точка в этом случае будет точка с координатами

$$y = 0$$
; $x = 3a - x_C = 3 \cdot 28 - 39,6 = 44,4$ cm.

$$[F] = \frac{0.85 \cdot 3.3 \cdot 10^{6} \cdot 5657 \cdot 10^{-4}}{1 + \frac{14.7 \cdot 44.4}{582}} = 748 \cdot 10^{3} \text{ H} = 748 \text{ kH}.$$

Для выполнения условия прочности необходимо выбрать наименьшее значение [F] = 711 кH.

- 4. Исследование изменения напряжений в поперечном сечении при перемещении силы F вдоль одной из главных осей для 5-и случаев (рис. 13).
- 4.1. Сила приложена в точке пересечения положительной полуоси с контуром поперечного сечения

$$x_F = 0$$
; $y_F = 42$ cm.

Для построения эпюры σ необходимо вычислить значения напряжения для 2-х точек: для крайних верхней точки B (x=0; y=42 см) и для нижней H (x=0; y=-42 см) (рис. 13).

$$\sigma_{(B)} = -\frac{711 \cdot 10^{3}}{5657 \cdot 10^{-4}} \left(1 + \frac{42 \cdot 42}{557} \right) = -5,25 \cdot 10^{6} \frac{H}{M^{2}} = -5,25 \text{ M}\Pi a;$$

$$\sigma_{(H)} = -\frac{711 \cdot 10^{3}}{5657 \cdot 10^{-4}} \left(1 + \frac{42 \cdot (-42)}{557} \right) = 2,73 \cdot 10^{6} \frac{H}{M^{2}} = 2,73 \text{ M}\Pi a.$$

4.2. Сила приложена в точке пересечения положительной полуоси с контуром ядра сечения. В этом случае

$$x_F = 0$$
; $y_F = 13.3$ cm.

$$\sigma_{(B)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{13,3 \cdot 42}{557} \right) = -2,52 \cdot 10^6 \frac{H}{M^2} = -2,52 \text{ M}\Pi a;$$

$$\sigma_{(H)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{13,3 \cdot (-42)}{557} \right) = 0.$$

4.3. Сила приложена в центре тяжести

$$x_F = 0$$
; $y_F = 0$.

В этом случае будет иметь место центральное сжатие

$$\sigma = \sigma_{(B)} = \sigma_{(H)} = \frac{F}{A} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} = -1,26 \cdot 10^6 \frac{H}{M^2} = -1,26 \text{ M}\Pi a.$$

4.4. Сила приложена в точке пересечения отрицательной полуоси с контуром ядра сечения. В этом случае

$$x_F = 0$$
; $y_F = -13.3$ cm.

$$\sigma_{(B)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{-13,3 \cdot 42}{557} \right) = 0;$$

$$\sigma_{(H)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{-13,3 \cdot (-42)}{557} \right) = -2,52 \cdot 10^6 \frac{H}{M^2} = -2,52 \text{ M}\Pi a.$$

4.5. Сила приложена в точке пересечения отрицательной полуоси с контуром поперечного сечения. В этом случае

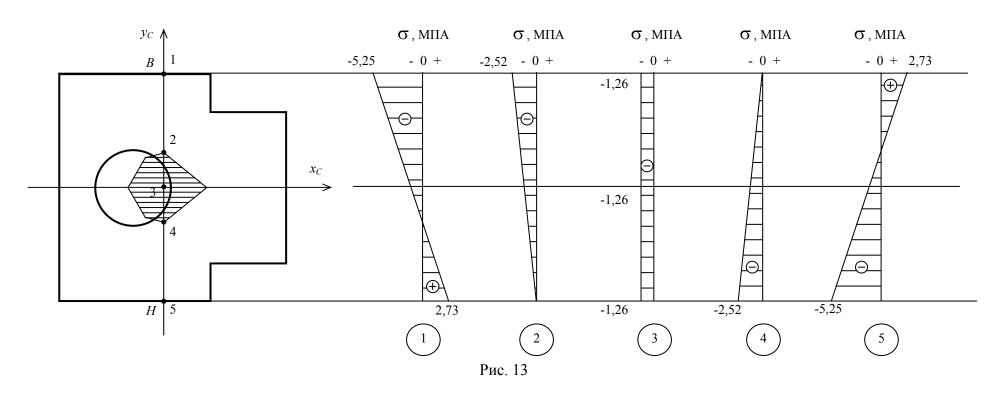
$$x_F = 0$$
; $y_F = -42$ cm.

$$\sigma_{(B)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{-42 \cdot 42}{557} \right) = 2,73 \cdot 10^6 \frac{H}{M^2} = 2,73 \text{ M}\Pi a;$$

$$\sigma_{(H)} = -\frac{711 \cdot 10^3}{5657 \cdot 10^{-4}} \left(1 + \frac{-42 \cdot (-42)}{557} \right) = -5,25 \cdot 10^6 \frac{H}{M^2} = -5,25 \text{ M}\Pi a.$$

Эпюры нормальных напряжений, построенные по результатам расчетов, показаны на рис. 13.

Эпюры от для различных точек приложения силы



5. Определение положения нейтральной линии для точек приложения силы, указанных в поперечном сечении (рис. 14).

Воспользуемся формулами (11).

Точка 1:

$$x_{F_1} = -39,6$$
 cm; $y_{F_1} = -42$ cm.

Определим отрезки, отсекаемые нейтральной линией

$$a_{x_1} = -\frac{i_y^2}{x_{F_1}} = -\frac{582}{-39.6} = 14.7 \text{ cm};$$

$$a_{y_1} = -\frac{i_x^2}{y_E} = -\frac{557}{-42} = 13,3 \text{ cm}.$$

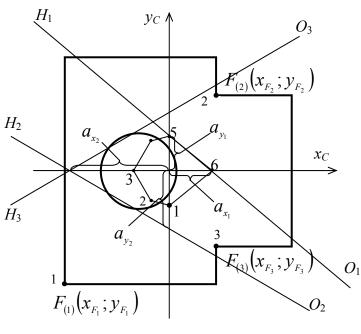


Рис. 14

Очевидно, в данном случае отрезки, отсекаемые нейтральной линией должны совпадать с координатами точек контура ядра сечения (см. рис. 14):

$$a_{x_1} = x_{F(6)}^{s} = 14,7$$
 cm;

$$a_{y_1} = y_{F(5)}^s = 13.3$$
 cm.

Точка 2:

$$x_{F_2} = 2a - x_C = 2 \cdot 28 - 39,6 = 16,4$$
 cm; $y_{F_2} = a = 28$ cm.

$$a_{x_2} = -\frac{i_y^2}{x_E} = -\frac{582}{16.4} = -35.5$$
 cm;

$$a_{y_2} = -\frac{i_x^2}{y_{F_2}} = -\frac{557}{28} = -19.9$$
 cm.

Точка 3:

$$x_{F_3} = 16,4$$
 cm; $y_{F_3} = -28$ cm.

$$a_{x_3} = -\frac{i_y^2}{x_{F_3}} = -\frac{582}{16.4} = -35.5$$
 cm;

$$a_{y_3} = -\frac{i_x^2}{y_{F_3}} = -\frac{557}{-28} = 19.9$$
 cm.

Нейтральные линии H_2O_2 и H_3O_3 для точек приложения 2-й и 3-й сил показаны на рис. 14.

6. ВАРИАНТЫ ЗАДАНИЙ ДЛЯ ВЫПОЛНЕНИЯ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ «РАСЧЕТ БРУСА ПРИ ВНЕЦЕНТРЕННОМ ДЕЙСТВИИ СОСРЕДОТОЧЕННОЙ СЖИМАЮЩЕЙ СИЛЫ»

Для бруса со сложным поперечным сечением (рис. 15) с известными размерами необходимо:

- 1. Определить положение центра тяжести, положение главных центральных осей инерции, главные центральные моменты инерции, главные радиусы инерции.
 - 2. Построить ядро сечения.
- 3. Определить допускаемую силу [F] из условия прочности по первому предельному состоянию.
- 4. Исследовать изменение напряжений в поперечном сечении при перемещении силы F вдоль одной из главных осей для 5-и случаев:
- 1) сила приложена в точке пресечения положительной полуоси с контуром поперечного сечения;
- 2) сила приложена в точке пересечения положительной полуоси с контуром ядра сечения;
 - 3) сила приложена в центре тяжести;
- 4) сила приложена в точке пересечения отрицательной полуоси с контуром ядра сечения;
- 5) сила приложена в точке пересечения отрицательной полуоси с контуром поперечного сечения.

Построить эпюры напряжений для каждого случая нагружения.

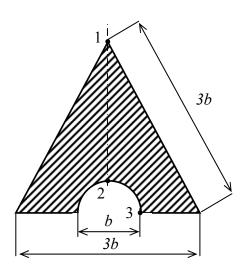
5. Для указанных точек в поперечном сечении приложения силы построить положения нейтральной оси.

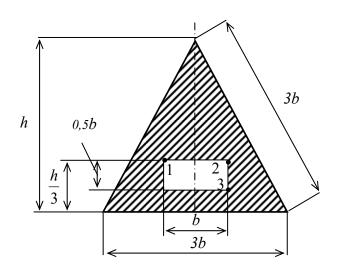
Исходные данные приведены в табл. 5

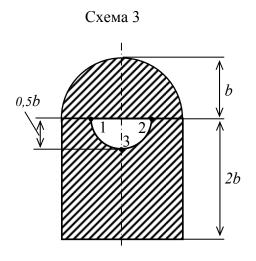
Таблица 5

No popyoyana h y		Без	ГОН	Кирпичная кладка		
№ варианта	<i>b</i> , м	γ	<i>R</i> , МПа	γ	R, MПа	
1	0,20	0,85	0,95	0,65	2,0	
2	0,24	0,80	2,1	0,65	1,6	
3	0,22	0,80	2,2	0,75	1,8	
4	0,30	0,90	2,8	0,75	1,5	
5	0,32	0,75	3,1	0,80	1,7	
6	0,36	0,70	1,8	0,80	1,4	
7	0,38	0,80	1,6	0,90	1,3	
8	0,40	0,85	2,8	0,90	1,1	
9	0,42	0,80	4,5	1,00	1,2	
10	0,44	0,75	4,6	1,00	1,0	

Схема 2







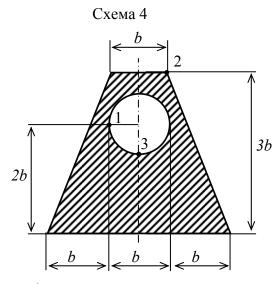


Рис. 15 (начало)

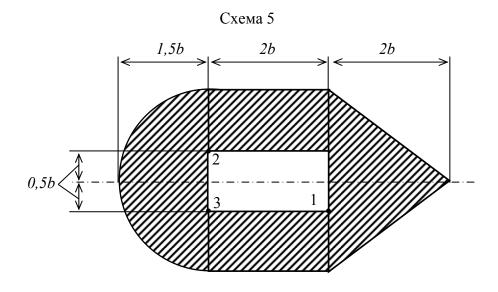


Схема 6

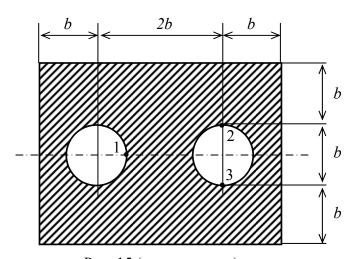


Рис. 15 (продолжение)

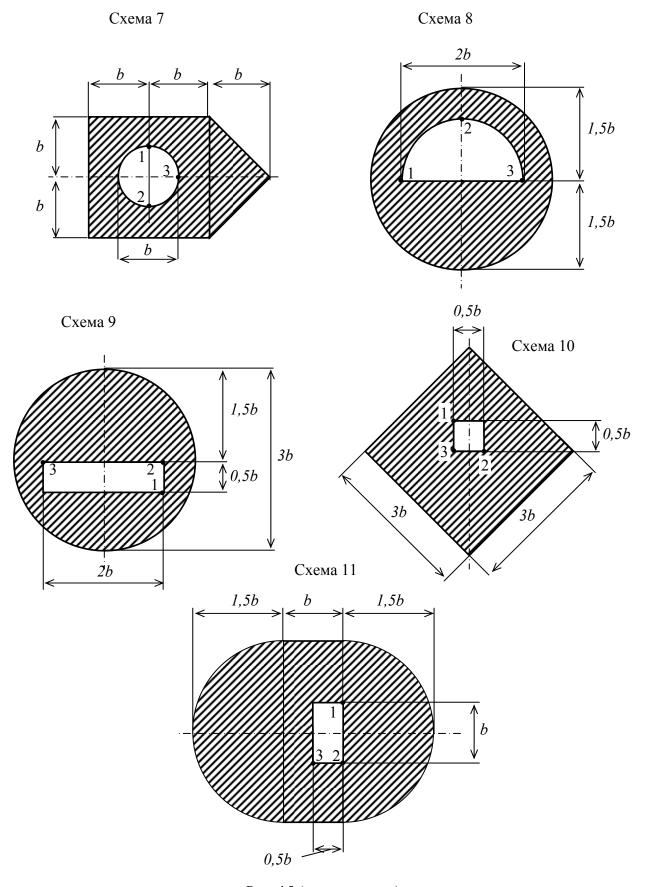


Рис. 15 (продолжение)

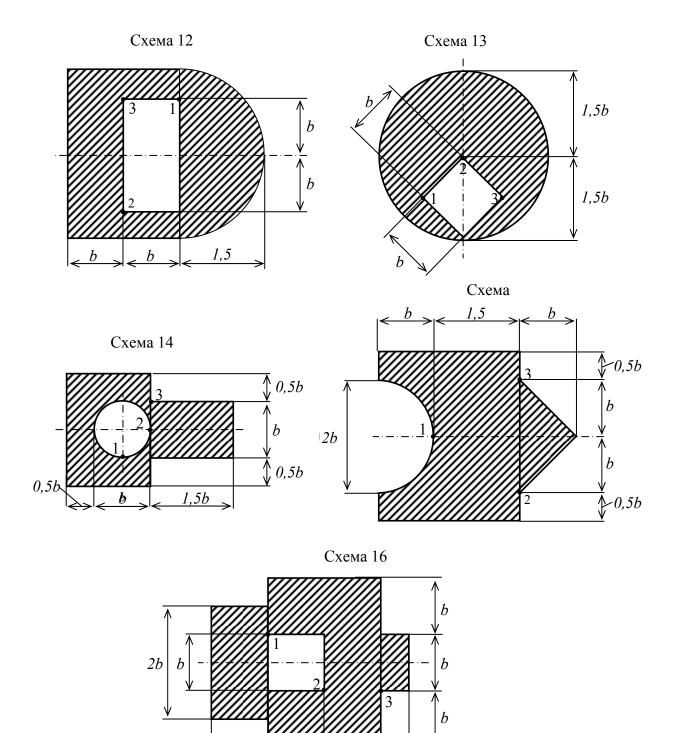


Рис. 15 (продолжение)

 $\stackrel{\Leftrightarrow}{0,5b}$

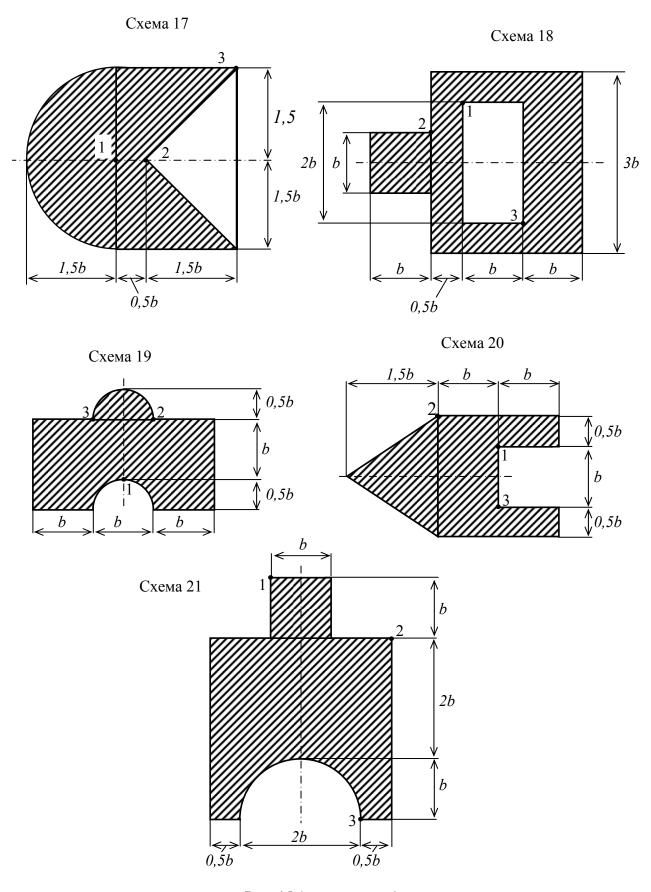


Рис. 15 (продолжение)

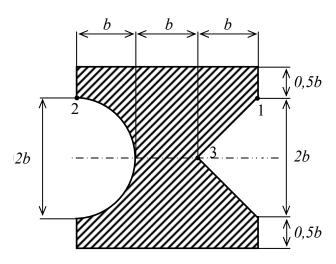


Схема 23

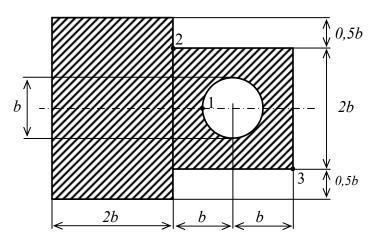


Схема 24

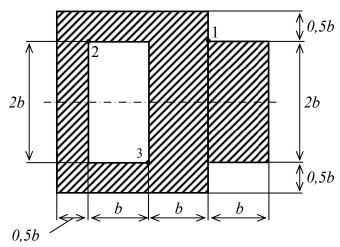
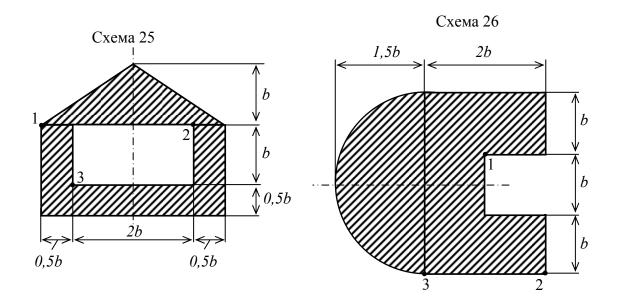
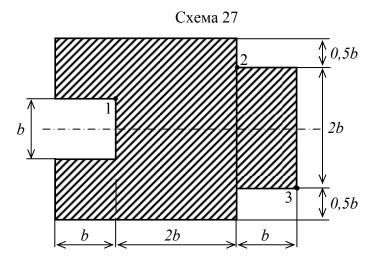
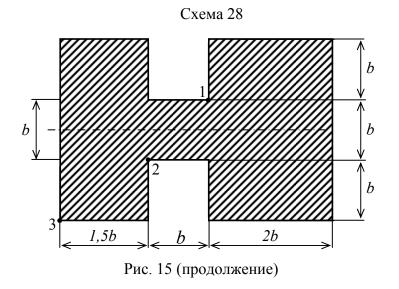


Рис. 15 (продолжение)







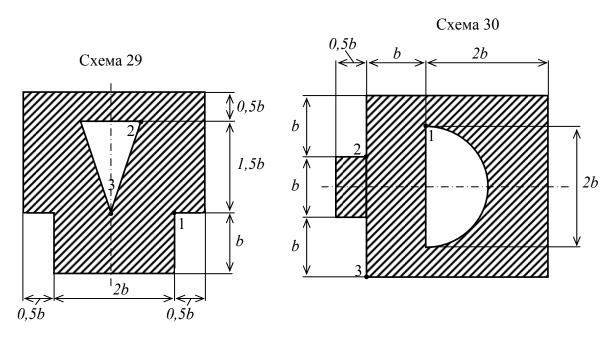


Рис. 15 (окончание)

7. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

Для проверки знаний, полученных в процессе изучения настоящих методических указаний студентам предлагается ответить на контрольные вопросы и выполнить контрольные задания.

Контрольные вопросы

- 1. Какой вид сопротивления называется сложным?
- 2. Какой случай сложного сопротивления называется внецентренным растяжением и сжатием?
- 3. Как определяются внутренние усилия при внецентренном растяжении или сжатии?
- 4. По какой формуле определяются нормальные напряжения при внецентренном растяжении или сжатии?
- 5. Как определяется положение нейтральной линии при внецентренном растяжении или сжатии?
- 6. Какие возможны случаи расположения нейтральной линии по отношению к плоскости поперечного сечения при внецентренном растяжении и сжатии?
 - 7. Что такое ядро сечения? Что называется контуром ядра сечения?
 - 8. Какие формулы используются при построении ядра сечения?

Контрольные задания

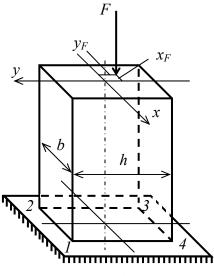


Рис. 16

2. Для указанных на рис. 17 поперечных сечений построить ядро сечения (a = 3 M; d = 1 M, D = 4 M, b = 2 M).

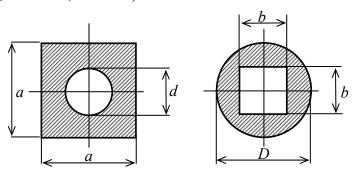
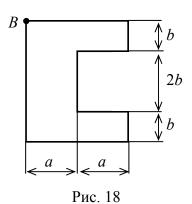
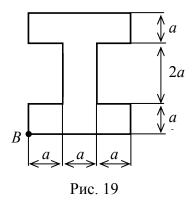


Рис. 17

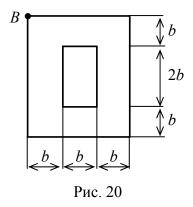
3. Стержень, поперечное сечение которого изображено на рис. 18, сжимается продольной силой F=1,5 кH, приложенной в точке B. Известны размеры: a=6 см, b=5 см. Вычислить наибольшее растягивающее и наибольшее сжимающее напряжения.



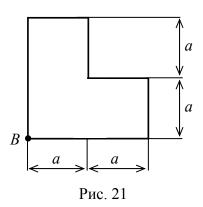
4. Построить эпюру нормальных напряжений для бруса с поперечным сечением, указанным на рис. 19, сжатого в точке B продольной силой F = 2 кH (a = 4 cm).



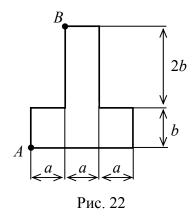
5. Стержень, поперечное сечение которого показано на рис. 20 (размер b известен), в точке B растянут продольной силой F. Требуется построить ядро сечения и показать положение нейтральной линии.



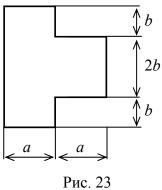
6. Построить эпюру нормальных напряжений для бруса, поперечное сечение которого показано на рис. 21. В точке B стержень сжат продольной силой F = 1,2 кH, размер a = 3 см.



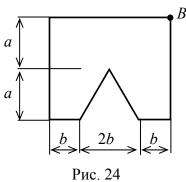
7. Стержень, поперечное сечение которого показано на рис. 22, сжимается продольной силой $F=1,3\,$ кH, приложенной в точке B. Размеры $a=4\,$ см; $b=5\,$ см. Вычислить наибольшее растягивающее и наибольшее сжимающее напряжения.



8. Для сечения, показанного на рис. 23, построить ядро сечения (a=4 см b=3 см).



9. Брус, поперечное сечение которого показано на рис. 24, в точке B сжат продольной силой F. Известны размеры a=4 см и b=3 см. Требуется показать положение нейтральной линии.



10. Для сечения, указанного на рис. 25, построить ядро сечения (a=2 см).

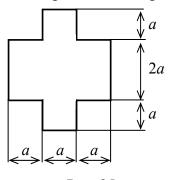


Рис. 25

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Александров А. В.* Сопротивление материалов / А. В. Александров, В. Д. Потапов, Б. П. Державин; под ред. А.В. Александрова. М.: Высш. школа, 2008. 559 с.
- 2. *Вольмир А. С.* Сборник задач по сопротивлению материалов / А. С. Вольмир, Ю. П. Григорьев, А. И. Коданев. М. : Наука, 1984. 407 с.
- 3. *Кукса Л. В.* Курс лекций по сопротивлению материалов с примерами решения задач / Л. В. Кукса, Е. Е. Евдокимов ; под ред. Л. В. Куксы; ВолгГАСУ. Волгоград, 2003. 187 с.
- 4. *Кукса Л. В.* Курс лекций по сопротивлению материалов с примерами решения задач. Ч. 2 / Л. В. Кукса, Е. Е. Евдокимов ; под ред. Л. В. Куксы; ВолгГАСУ. Волгоград, 2007. 200 с.
- 5. Пособие к решению задач по сопротивлению материалов: учеб. пособие для технических вузов / И. А. Миролюбов, С. А. Енгалычев, Н. Д. Сергиевский и др. 5-е изд., перераб. и доп. М.: Высшая школа, 1985. 399 с.
- 6. Справочник по сопротивлению материалов / Е. Ф. Винокуров, М. К. Балыкин, И. А. Голубев и др. Минск : Наука и техника, 1988. 464 с.

Площади A, координаты y_{C} центров тяжести C, осевые моменты инерции I и радиусы инерции i для основных форм сечений

Квадрат	a A	$A = a^{2};$ $I_{x} = I_{y} = \frac{a^{4}}{12};$ $i_{x} = i_{y} = 0,29a$
Квадрат с квад- ратным отвер- стием	$ \leftarrow a \rightarrow$	$A = a^{2} - b^{2};$ $I_{x} = I_{y} = \frac{a^{4} - b^{4}}{12};$ $i_{x} = i_{y} = 0,29\sqrt{a^{2} - b^{2}}$
Квадрат с круг-лым отверстием		$A = a^{2} - \frac{\pi d^{2}}{4};$ $I_{x} = I_{y} = \frac{a^{4}}{12} - \frac{\pi d^{4}}{64};$ $i_{x} = i_{y} = 0.14 \sqrt{\frac{a^{4} - \pi d^{4}}{4a^{2} - \pi d^{2}}}$
Прямоугольник	$h = \frac{1}{b}$	$A = bh;$ $I_{x} = \frac{bh^{3}}{12}; I_{y} = \frac{hb^{3}}{12};$ $i_{x} = \frac{h}{\sqrt{12}}; i_{y} = \frac{b}{\sqrt{12}}$

Окончание прил.

Полый прямо- угольник	$H = \begin{pmatrix} A & A & A \\ B & A & A \\ C & A & A \\ B & A & A \\ C & A & A $	$A = BH - bh;$ $I_{x} = \frac{BH^{3} - bh^{3}}{12};$ $I_{y} = \frac{HB^{3} - hb^{3}}{12};$ $i_{x} = \sqrt{\frac{BH^{3} - bh^{3}}{12(BH - bh)}};$ $i_{x} = \sqrt{\frac{HB^{3} - hb^{3}}{12(BH - bh)}};$
Треугольник	$h \xrightarrow{C} y$ $b \xrightarrow{y_C} x$	$A = \frac{bh}{2};$ $y_{C} = \frac{h}{3};$ $I_{x} = \frac{bh^{3}}{36}; I_{y} = \frac{hb^{3}}{48};$ $i_{x} = \frac{h}{3\sqrt{2}}; i_{y} = \frac{b}{6}\sqrt{\frac{3}{2}}$
Круг	C X	$A = \frac{\pi d^2}{4};$ $I_x = I_y = \frac{\pi d^4}{64};$ $i_x = i_y = \frac{d}{4}$
Кольцо	d D X	$\alpha = \frac{d}{D};$ $A = \frac{\pi D^{2}}{4} (1 - \alpha^{2});$ $I_{x} = I_{y} = \frac{\pi D^{4}}{64} (1 - \alpha^{4});$ $i_{x} = i_{y} = \frac{1}{4} \sqrt{D^{2} + d^{2}}$
Полукруг	y_{c} $d=2r$	$A = \frac{\pi d^{2}}{8};$ $y_{C} = \frac{2d}{3\pi};$ $I_{x} = 0.11r^{4}; I_{y} = \frac{\pi d^{4}}{128};$ $i_{x} = 0.13d; i_{y} = \frac{d}{4}$