Министерство образования и науки Российской Федерации Волгоградский государственный архитектурно-строительный университет

ФИЗИЧЕСКАЯ ХИМИЯ

Методические рекомендации и задания к контрольной работе

Составитель О. А. Кузнечиков

© Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный архитектурно-строительный университет», 2013

Волгоград ВолгГАСУ 2013 Ф 505 **Физическая** химия [Электронный ресурс]: методические рекомендации и задания к контрольной работе / М-во образования и науки Рос. Федерации, Волгогр. гос. архит.-строит. ун-т; сост. О. А. Кузнечиков. — Электронные текстовые и графические данные (302 Кбайт). — Волгоград: ВолгГАСУ, 2013. — Учебное электронное издание: 1 DVD-диск. — Систем. требования: РС 486 DX-33; Місгозоft Windows XP; 2-скоростной дисковод DVD-ROM; Adobe Reader 6.0. — Официальный сайт Волгоградского государственного архитектурностроительного университета. Режим доступа: http://www.vgasu.ru/publishing/on-line/ — Загл. с титул. экрана.

Даны рекомендации по самостоятельному выполнению контрольной работы и вопросы для самоподготовки к зачету.

Для студентов направления 270800.62 «Строительство» профиля «Производство строительных материалов, изделий и конструкций» заочной сокращенной и заочной форм обучения.

Для удобства работы с изданием рекомендуется пользоваться функцией Bookmarks (Закладки) в боковом меню программы Adobe Reader.

УДК 544.1 (076.5) ББК 24.5я73

Нелегальное использование данного продукта запрещено

Оглавление

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ К ЗАЧЕТУ	. 4
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ЗАДАНИЯ	
К КОНТРОЛЬНОЙ РАБОТЕ	. 5
Варианты контрольных заданий	. 6
Теоретические вопросы	
Задачи	. 7
Тема 1. Задачи 26—53	. 7
Тема 2. Задачи 54—75	. 8
Тема 3. Задачи 76—100	11
Тема 4. Задачи 130—157	15
Список рекомендуемой литературы	17
ПРИЛОЖЕНИЕ	18

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ К ЗАЧЕТУ

- 1. Что такое «химическая термодинамика» (ее содержание или ее задача)?
- 2. Что такое термодинамическая система? Виды термодинамических систем (две классификации: по взаимодействию с окружающей средой и фазам, составляющим систему). Типы процессов (четыре вида), которые рассматривает термодинамика.
 - 3. Параметры. Уравнения состояния. Уравнение состояния идеального газа.
 - 4. Внутренняя энергия.
- 5. Словесная и математическая формулировки первого закона термодинамики. Схема процесса, который является примером первого закона (газ в цилиндре).
- 6. Математическое выражение первого закона термодинамики для изобарических и изохорических процессов.
- 7. Понятие об энтальпии. Для какой группы процессов (реакций) используют именно энтальпию? Как получается ее математическая формула из Первого закона термодинамики? Что характеризует энтальпия, в чем ее отличие от внутренней энергии?
- 8. Экзотермические и эндотермические реакции. Правило знаков тепловых эффектов в классической термохимии, термодинамике и современной термохимии. Форма записи уравнения реакции с указанием величины теплового эффекта в каждом из вариантов записи.
- 9. Через какие величины, характеризующие систему, выражается тепловой эффект процесса (реакции) в случае изобарического и изохорического процесса?
- 10. Изменение числа моль (количества вещества) газообразных участников реакции в ходе процесса. Как это изменение влияет на различие тепловых эффектов одного и того же процесса, проведенного в изобарических и изохорических условиях? Формула, связывающая эти тепловые эффекты.
- 11. Закон Гесса. Что позволяет вычислять закон Гесса? Три следствия из закона Гесса (касающиеся обратной реакции, одинаковых начальных и одинаковых конечных состояний).
- 12. Энтропия: что она характеризует? Что такое термодинамическая вероятность, как она связана с величиной энтропии? Как изменяется энтропия с ростом температуры и почему? Как изменяется энтропия при переходе вещества из одного агрегатного состояния в другое и почему?
- 13. Второй закон термодинамики, его общая формулировка. Самопроизвольные и несамопроизвольные процессы. Что надо сделать, чтобы провести несамопроизвольный процесс? Как изменяется энтропия при протекании самопроизвольного процесса в замкнутой системе?
- 14. Изобарно-изотермический потенциал. Как его величина характеризует реакцию? Формула, связывающая изобарно-изотермический потенциал, энтропию и энтальпию процесса. Какое еще название употребляют для изменения изобарно-изотермического потенциала, происходящего в ходе химической реакции?

- 15. Два фактора, определяющих возможность протекания химической реакции. Когда они действуют согласованно, а когда противонаправленно? Роль какого фактора усиливается с увеличением температуры?
- 16. Константа равновесия реакции: словесная формулировка и математическое выражение, вывод выражения для константы из закона действующих масс. Каково численное значение K_p , если равновесие реакции сильно сдвинуто вправо, влево, если реакция находится в среднем положении? Формула, связывающая константу равновесия и энергию Гиббса. Какие численные значения константы и энергии Гиббса соответствуют друг другу? Когда достигается состояние химического равновесия (условие), какие еще особенности системы в этом состоянии? Как соотносятся скорости и константы скоростей прямой и обратной реакции, концентрации исходных веществ и продуктов реакции при различных значениях константы равновесия?
- 17. Фазовые равновесия. Параметры системы, компоненты системы, фазы. Что такое число степеней свободы системы? Диаграмма состояния однокомпонентной гетерогенной системы. Число степеней свободы для линий, полей и точек диаграммы.
- 18. Изменение температуры фазовых переходов растворов. Закон Рауля. Диаграмма давления насыщенного пара над раствором и растворителем. Зависимость изменения температуры фазового перехода от концентрации раствора. Изотонический коэффициент для растворов электролитов.
- 19. Диаграмма состояния двухкомпонентной гетерогенной системы (диаграмма плавкости). Число степеней свободы для линий, полей и точек диаграммы. Эвтектика.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ

Методические указания, вопросы для самопроверки, которые отражают объем требований к знаниям студента, и задание для контрольной работы даны по отдельным разделам программы. К выполнению контрольного задания приступают только после проработки всего курса по учебнику.

Каждый студент выполняет задание согласно своему варианту, определяемому по двум последним цифрам номера зачетки (табл. 1).

Следует обратить внимание на то, что данные некоторых задач представлены в обобщенных таблицах, так, например, задачи 26—53 имеют общее условие. Для каждой из этих задач данные для расчета нужно брать в таблице против номера задачи, соответствующей варианту.

В задачах не приводятся справочные данные, они помещены в приложении в соответствующих таблицах.

Варианты контрольных заданий

Таблица 1

Danssassass	Теоретический	Номер	а задач по	темам	
Варианты	вопрос	1	2	3	4
00, 50, 25, 75	1	26, 41	54	76	130
01, 51, 26, 76	2	27, 42	55	77	131
02, 52, 27, 77	3	28, 43	56	78	132
03, 53, 28, 78	4	29, 44	57	79	133
04, 54, 29, 79	5	30, 45	58	80	134
05, 55, 30, 80	6	31, 46	59	81	135
06, 56, 31, 81	7	32, 47	60	82	136
07, 57, 32, 82	8	33, 48	61	83	137
08, 58, 33, 83	9	34, 49	62	84	138
09, 59, 34, 84	10	35, 50	63	85	139
10, 60, 35, 85	11	36, 51	64	86	140
11, 61, 36, 86	12	37, 52	65	87	141
12, 62, 37, 87	13	38, 53	66	88	142
13, 63, 38, 88	14	39, 40	58	89	143
14, 64, 39, 89	15	40, 41	67	90	144
15, 65, 40, 90	16	41, 42	68	91	145
16, 66, 41, 91	17	42, 43	69	92	146
17, 67, 42, 92	18	43, 44	63	93	147
18, 68, 43, 93	19	44, 45	70	94	148
19, 69, 44, 94	20	45, 46	71	95	149
20, 70, 45, 95	21	46, 47	72	96	150
21, 71, 46, 96	22	47, 48	73	97	151
22, 72, 47, 97	23	48, 49	74	98	152
23, 73, 48, 98	24	49, 50	75	99	153
24, 74, 49, 99	25	50, 51	70	100	154

Теоретические вопросы

- 1. Основные понятия и определения химической термодинамики. Первое начало термодинамики.
- 2. Формулировки и математические выражения первого закона термодинамики для изохорного, изобарного, изотермического и адиабатического процессов.
- 3. Функции состояния (внутренняя энергия, энтальпия, энтропия, изобарно-изотермический потенциал). Физический смысл, применение.
- 4. Термохимия. Тепловой эффект реакции. Закон Гесса. Теплоты образования, сгорания, нейтрализации, растворения.
- 5. Тепловой эффект химической реакции. Знаки тепловых эффектов реакций в термохимии и термодинамике. Взаимосвязь тепловых эффектов реакции при постоянном давлении и постоянном объеме.
- 6. Закон Гесса, следствия из закона. Стандартные термодинамические величины и их использование для расчета тепловых эффектов химических реакций.

- 7. Энтальпия образования вещества. Расчет теплового эффекта химической реакции по величинам энтальпий образования.
- 8. Энтальпия сгорания вещества. Расчет теплового эффекта химической реакции по величинам энтальпий сгорания.
- 9. Самопроизвольные и несамопроизвольные процессы. Второе начало термодинамики. Энтропия.
- 10. Изменение энтропии как критерий направления процессов в изолированной системе.
- 11. Критерии возможности самопроизвольного процесса и равновесия в закрытых системах.
- 12. Химическое равновесие. Вывод константы равновесия из закона действующих масс.
- 13. Правило фаз Гиббса. Чему равно максимальное число степеней свободы в однокомпонентных, двухкомпонентных и трехкомпонентных системах?
 - 14. Уравнение Клапейрона Менделеева как уравнение состояния.
 - 15. Построение и анализ диаграммы состояния воды.
 - 16. Какая система называется раствором?
- 17. Какой пар называется насыщенным? Как зависит давление насыщенного пара от температуры?
- 18. Как зависит давление насыщенного пара над раствором нелетучего вещества от состава раствора? Закон Рауля.
- 19. Чем объяснить, что температура кипения раствора выше, чем температура кипения растворителя?
- 20. Температура кипения разбавленных растворов. Эбулиоскопия, ее применение.
- 21. Температура замерзания разбавленных растворов. Криоскопия, ее применение.
- 22. Как применить закономерности (давление пара, изменение температуры кипения и замерзания), выведенные для растворов неэлектролитов, к растворам веществ, распадающихся на ионы? В чем сущность изотонического коэффициента Вант-Гоффа?
- 23. Диаграмма состояния двухкомпонентной гетерогенной системы (диаграмма плавкости). Число степеней свободы для линий полей и точек диаграммы.
- 24. Диаграмма состояния однокомпонентной гетерогенной системы (диаграмма состояния воды). Число степеней свободы для линий, полей и точек диаграммы.
- 25. На чем основан термический анализ? Как на его основе построить диаграмму состояния? Что называется эвтектической смесью?

Задачи

Тема 1. Задачи 26—53. Для химической реакции (все реакции протекают в газовых фазах), указанной в табл. 2, вычислить ΔH^0 , ΔS^0 , ΔG^0 , K_p при T = 298 K, пользуясь справочными данными табл. 1 приложения.

Сделать выводы:

36

37

38

39

 $4HI + O_2 = 2H_2O + 2I_2$

 $C_2H_5Cl = C_2H_4 + HCl$

 $N_2O_4 = 2NO_2$

 $H_2 + CCl_4 = CHCl_3 + HCl$

- 1. Является ли данная реакция экзотермической или эндотермической?
- 2. Как изменилась энтропия системы после протекания реакции?
- 3. Протекает ли данная реакция самопроизвольно при стандартных условиях?
- 4. Каких веществ исходных или продуктов реакции будет больше в равновесной смеси?
- 5. Что означают фразы: «равновесие сдвинуто в сторону исходных веществ» и «равновесие сдвинуто в сторону продуктов реакции»?

№ задачи Уравнения реакций Уравнения реакций № задачи $4NH_3 + 5O_2 = 6H_{\overline{2}O} + 4NO$ $C_2H_4 + HF = \overline{C_2H_5F}$ 26 40 27 $\overline{\text{CCl}_4 + 4\text{H}_2} = \text{CH}_4 + 4\text{HCl}$ 41 $2NO + Cl_2 = 2NOCl$ 28 $2S_2 + CH_4 = 2H_2S + CS_2$ 42 $2NO_2 = 2NO + O_2$ 29 $CO + 3H_2 = CH_4 + H_2O$ 43 $SO_2 + Cl_2 = SO_2Cl_2$ 30 $Cl_2 + CO = COCl_2$ 44 $C_2H_4 + H_2O = C_2H_5OH$ 31 45 $2N_2 + 6 H_2O = 4NH_3 + 3O_2$ $CH_3I + HI = CH_4 + I_2$ 32 $CH_4 + Br_2 = CH_3Br + HBr$ $4CO + 2SO_2 = S_2 + 4CO_2$ 46 33 $F_2 + H_2O = 2HF + O$ 47 $CO_2 + 4H_2 = CH_4 + 2H_2O$ 34 $4HC1 + O_2 = 2H_2O + 2Cl_2$ 48 $CH_3Cl + NH_3 = CH_3NH_2 + HCl$ 35 49 $4HBr + O_2 = 2H_2O + 2Br_2$ $CH_3Br + NH_3 = CH_3NH_2 + HBr$

50

51

52

53

 $CH_3I + NH_3 = CH_3NH_2 + HI$

 $6CH_4 + O_2 = 2C_2H_2 + 2CO + 10H_2$

 $C_2H_2 + H_2O = CH_3COH$

 $C_2H_2 + 3H_2 = 2CH_4$

Таблица 2

Тема 2. Задачи 54—75. Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также численное значение тепловых эффектов, называют *термохимическими*. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q_p , равные изменению энтальпии системы ΔH . Значение ΔH приводят обычно в правой части уравнения, отделяя его запятой или точкой с запятой. Приняты следующие сокращенные обозначения агрегатного состояния веществ: г — газообразное, ж — жидкое, к — кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно. Если в результате реакции выделяется теплота, то $\Delta H < 0$. Например,

$$2SO_2(\Gamma) + O_2(\Gamma) \longleftrightarrow 2SO_3(\Gamma)$$
; $\Delta H = -791.6$ кДж.

При расчетах необходимо пользоваться справочными данными табл. 2 приложения.

54. Вычислите, какое количество теплоты выделится при восстановлении Fe₂O₃ металлическим алюминием, если было получено 335,1 г железа.

- 55. Газообразный этиловый спирт C_2H_5OH можно получить при взаимодействии этилена $C_2H_4(\Gamma)$ и водяного пара. Напишите термохимическое уравнение этой реакции, вычислив ее тепловой эффект.
- 56. Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

FeO(к) + CO(г) = Fe(к) + CO₂(г);
$$\Delta H$$
 = -13,18 кДж;
CO(г) + ½O₂(г) = CO₂(г); ΔH = -283,0 кДж;
H₂(г) + ½O₂(г) = H₂O(г); ΔH = -241,83 кДж.

- 57. При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод $CS_2(\Gamma)$. Напишите термохимическое уравнение этой реакции, вычислив ее тепловой эффект.
- 58. Напишите термохимическое уравнение реакции между $CO(\Gamma)$ и водородом, в результате которой образуются $CH_4(\Gamma)$ и $H_2O(\Gamma)$. Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия?
- 59. Запишите реакцию, тепловой эффект которой равен теплоте образования NO. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:

$$4NH_3(\Gamma) + 5O_2(\Gamma) = 4NO(\Gamma) + 6 H_2O(ж); \Delta H = -1168,80 кДж;$$

 $4NH_3(\Gamma) + 3O_2(\Gamma) = 2N_2(\Gamma) + 6 H_2O(ж); \Delta H = -1530,28 кДж.$

- 60. Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлорида водорода. Напишите термохимическое уравнение этой реакции, вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия?
- 61. Запишите реакцию, тепловой эффект которой равен теплоте образования метана. Вычислите теплоту образования метана, исходя из следующих термохимических уравнений:

$$H_2(\Gamma) + 1/2O_2(\Gamma) = H_2O(ж); \Delta H = -285,84 \text{ кДж};$$
 $C(\kappa) + O_2(\Gamma) = CO_2(\Gamma); \Delta H = -393,51 \text{ кДж};$
 $CH_4(\Gamma) + 2O_2(\Gamma) = 2H_2O(ж) + CO_2(\Gamma); \Delta H = -393,51 \text{ кДж}.$

62. Запишите реакцию, тепловой эффект которой равен теплоте образования гидроксида кальция. Вычислите теплоту образования гидроксида кальция, исходя из следующих термохимических уравнений:

$$Ca(\kappa) + 1/2O_2(\Gamma) = CaO(\kappa); \Delta H = -635,60 \text{ кДж};$$

 $H_2(\Gamma) + 1/O_2(\Gamma) = H_2O(\mathfrak{m}); \Delta H = -285,84 \text{ кДж};$
 $CaO(\kappa) + H_2O(\mathfrak{m}) = Ca(OH)_2(\kappa); \Delta H = -65,06 \text{ кДж}.$

- 63. Тепловой эффект реакции сгорания жидкого бензола с образованием паров воды и диоксида углерода равен минус 3135,58 кДж. Составьте термо-химическое уравнение этой реакции и вычислите теплоту образования $C_6H_6(\mathfrak{m})$.
- 64. Вычислите, сколько теплоты выделится при сгорании 165 л (н.у.) ацетилена C_2H_2 , если продуктами сгорания являются диоксид углерода и пары воды?
- 65. При сгорании газообразного аммиака образуются пары воды и оксид азота. Сколько теплоты выделится при этой реакции, если было получено 44,8 л NO в пересчете на нормальные условия?
- 66. Реакция горения метилового спирта выражается термохимическим уравнением:

$$CH_3OH(x) + 3/2O_2(r) = CO_2(r) + 2H_2O(x); \Delta H = ?$$

Вычислите тепловой эффект этой реакции, если известно, что мольная теплота парообразования $CH_3OH(ж)$ равна +37.4 кДж.

- 67. При сгорании 11,5 г жидкого этилового спирта выделилось 308,71 кДж теплоты. Напишите термохимическое уравнение реакции, в результате которой образуются пары воды и диоксид углерода. Вычислите теплоту образования $C_2H_5OH(ж)$.
 - 68. Реакция горения бензола выражается термохимическим уравнением:

$$C_6H_6(x) + 7^{1/2}O_2(r) = 6CO_2(r) + 3H_2O(r); \Delta H = ?$$

Вычислите тепловой эффект этой реакции, если известно, что мольная теплота парообразования бензола равна +33,9 кДж.

- 69. Вычислите тепловой эффект и напишите термохимическое уравнение реакции горения 1 моль этана $C_2H_6(\Gamma)$, в результате которой образуются пары воды и диоксид углерода. Сколько теплоты выделится при сгорании 1 м³ этана в пересчете на нормальные условия?
 - 70. Реакция горения аммиака выражается термохимическим уравнением:

$$4NH_3(\Gamma) + 3O_2(\Gamma) = 2N_2(\Gamma) + 6H_20(ж); \Delta H = -1530,28 кДж.$$

Вычислите теплоту образования $NH_3(\Gamma)$.

- 71. При взаимодействии 6,3 г железа с серой выделилось 11,31 кДж теплоты. Вычислите теплоту образования сульфида железа FeS.
- 72. При сгорании 1 л ацетилена (н.у.) выделяется 56,053 кДж теплоты. Напишите термохимическое уравнение реакции, в результате которой образуются пары воды и диоксид углерода. Вычислите теплоту образования $C_2H_2(\Gamma)$.
- 73. При получении 37 г гидроксида кальция из $CaO(\kappa)$ и $H_2O(ж)$ выделяется 32,53 кДж теплоты. Напишите термохимическое уравнение этой реакции и вычислите теплоту образования оксида кальция.
 - 74. Реакция горения этана выражается термохимическим уравнением:

$$C_2H_6(\Gamma) + 3\frac{1}{2}O_2 = 2 CO_2(\Gamma) + 3H_2O (ж); \Delta H_{x,p} = -1559,87 кДж.$$

Вычислите теплоту образования этана, если известны теплоты образования $CO_2(\Gamma)$ и $H_2O(\kappa)$.

75. Реакция горения этилового спирта выражается термохимическим уравнением:

$$C_2H_5OH(x) + 3O_2(r) = 2CO_2(r) + 3H_2O(x); \Delta H = ?$$

Вычислите тепловой эффект реакции, если известно, что мольная (молярная) теплота парообразования $C_2H_5OH(\kappa)$ равна +42,36 кДж, и известны теплоты образования: $C_2H_5OH(\Gamma)$; $CO_2(\Gamma)$; $H_2O(\kappa)$.

- **Тема 3. Задачи 76—100.** На основании данных о температуре начала кристаллизации двухкомпонентной системы (табл. 3):
- 1) построить диаграмму фазового состояния (диаграмму плавкости) системы веществ A и B;
- 2) обозначить точками: 1 жидкий расплав, содержащий a % вещества А при температуре T_1 ; 2 расплав, содержащий a % вещества А, находящийся в равновесии с твердой фазой; 3 равновесие трех фаз;
- 3) указать, при какой температуре начнет отвердевать расплав, содержащий c % вещества А. При какой температуре он отвердеет полностью? Каков состав первых кристаллов?
- d указать, при какой температуре начнет плавиться система, содержащая d % вещества А. При какой температуре она расплавится полностью? Каков состав первых капель расплава?
 - 5) определить качественный и количественный состав эвтектики.

Таблица 3

им		Температура		Mongayag	Температура	Содержание вещества А			Темпе-
№ задачи	Системы	Молярная доля А, %	начала кристаллизации T , K	Молярная доля А, %			c, %	d, %	ратура <i>T</i> ₁ , К
1	2	3	4	5	6	7	8	9	10
76	A — KCl B — SnCl ₂	0 5 10 15 20 25 30 35	512 507 496 479 477 481 478 473	40 45 50 52,5 55 70 80 100	460 481 497 583 658 853 952 1050	45	5	25	493
77	A — KCl B — PbCl ₂	0 10 20 25 30 33,5 40	769 748 713 701 710 713 707	45 50 55 65 75 90 100	693 703 733 811 893 1003 1048	30	5	25	753

							держа: щества		
№ задачи		Модануюя	Температура	Температура Молярная начала	ВС	цесть	ı A	Темпе-	
зад	Системы	Молярная доля А, %	начала кристаллизации	доля А, %	начала кристаллизации,				ратура
Ž		доли 11, 70	T, K	доли 11, 70	<i>T</i> , K	a. %	c, %	d. %	T_1 , K
			,		,	.,	, , , ,	.,	
1	2	3	4	5	6	7	8	9	10
		0	923	50	769				
		8	895	60	731				
		15	865	65	705				
78	A — KCl	25	815	66	701	40	10	40	873
, 0	$B - MnCl_2$	34	745	75	705		10		0,15
		36	722	85	925				
		38	735	100	1047				
-		40	747						
		0 9	1133	50	788				
	A Lico	20	1055 955	54,5 62	778 765	40			
79	$A - Li_2CO_3$ $B - K_2CO_3$	33	765	66,6	763 798	40	10	40	923
	$\mathbf{b} - \mathbf{k}_2 \mathbf{C} \mathbf{O}_3$	39,5	773	83,5	911				
		39,3 44,2	778	100	983				
		0	1294	55	1048				
		10	1241	60	1053				
		20	1193	63	1098				
	A — MgSO ₄	30	1116	65	1113	55			
80	$B - Cs_2SO_4$	40	1013	70	1163	33	10	40	1173
	B C52504	45	953	80	1238				
		47	969	90	1323				
		50	999	100	1397				
		0	1293	65	983				
		10	1216	75,5	903				
		20	1113	77,5	906				
	A 1; 50	25	1063	50	910	40			
81	$\begin{array}{c c} A - Li_2SO_4 \\ B - Cs_2SO_4 \end{array}$	31	953	85	905	40	10	40	1173
	$D - Cs_2SO_4$	35	963	89,5	893				
		40	1003	90	910				
		50	1011	95	1055				
		55	1007	109	1129				
		0	658	53	504				
	A 777	10	643	55	515				
82	A — KI	30 45	596 520	60 65	575 656	55	10	40	723
	$B - CdI_2$	43 47	470	80	833				
		47	468	100	951				
-		0	1147	50	1180				
		10	1124	60	1158				
		15	1089	70	1071				
83	A — CsCl	20	1059	80	877	35	10	50	1173
33	B — SrCl ₂	25	1102	85	862				11/5
		35	1155	95	875,8				
		40	1166	100	876,8				
		0	1147	55	696				
		10	1089	65	896				
	A — RbCl	20							
84	$B - SrCl_2$	30	906	75			35	1073	
	D — 51C12	40	964	80	879				
		45	975	90	960				
		50	978	100	999				

Продолжение табл. 3

Иы			Температура		Температура	Содержание вещества А		Темпе-			
№ задачи	Системы	Молярная	начала	Молярная	начала				ратура		
9		доля А, %	кристаллизации T , К	доля А, %	кристаллизации, T , K	a, %	c, %	d, %	T_1 , K		
_			I, K		I, K	<i>u</i> , /0	c, /o	<i>u</i> , /0			
1	2	3	4	5	6	7	8	9	10		
1	2	0	1043	40	1027	/	0	,	10		
		5	1023	45	1015						
	, IZG1	10	978	55	961						
85	A — KCl	18,5	911	67	873	25	5	35	1023		
	B — CaCl ₂	20	828	70	899						
		25	980	90	1021						
		35	1022	100	1049						
		0	912	65	542						
		10	868	66,6	547						
	A — CuCl	20	814	70	541						
86	B — CsCl	35	645	75	521	55	10	25	773		
	B — CsCi	45	571	80	541						
		50	549	90	623						
		60	533	100	695						
		0	702	50	699						
		10	656	57,5	697						
0.7	$A - CdC1_2$	20	604	67,5	673	40	1.0	40	550		
87	B — T1C1	28	572	80	754	42	10	40	773		
		30	589	85	777						
		36,5	645	95	823						
		47	694 1003	100 57	841 832						
		10	972	66,7	847						
		25	872	75	843						
88	$A - SrBr_2$	29	829	82	835	60	10	50	973		
00	B — KBr	33,3	832	85	851	00	10	30	713		
		40	826	95	897						
		50	807	100	916						
		0	1073	53	983						
		13,3	1052	61,6	753						
		22,2	1033	66,8	680						
00	A — FeCl ₃	35,8	989	74,6	641	15	10	15	1022		
89	B — NaCl	37,6	975	80,6	622	45	10	45	1033		
		40	983	81,6	642						
		47	999	84,8	697						
		50,6	1003	100	859						
		0	702	35	525						
		10	658	37	506						
90	A — FeCl ₈	22	598	45	533	30	5	30	673		
	B — T1C1	26	535	52	553				0,72		
		29	549	62	560						
		33	563	100	585						
		0	1121	23,8	1212						
		4,9	1099 1060	26	1224 1289						
91	A — NiF ₂	9,2 13,4	1120	30,3 37,9	1359	15	5	20	1273		
71	B — KF	15,4	1120	46,7	1397	13	3	20	14/3		
		18,4	1168	50,5	1403						
		21,8	1193	58	1391						
	Į	21,0	1 11/3	1 20	1 13/1	I	ı	ı .			

Продолжение табл. 3

	T	1	T	Т	T		-	1	
						Co,	держа	ние	
чи			Температура		Температура	вег	цества	a A	Темпе-
№ задачи	Системы	Молярная	начала	Молярная	начала		1	l	
33	Системы	доля А, %	кристаллизации	доля А, %	кристаллизации,				ратура T_1 , К
Ž			T, K		<i>T</i> , K	<i>a</i> , %	<i>c</i> , %	<i>d</i> , %	I_1 , K
1	2	3	4	5	6	7	8	9	10
		0	685	45	618				
		10	668	50	622				
		20	640	55	651				
02	A — KI	25	622	60	695	40	10	40	772
92	$B - PbI_2$	30	579	70	773	40	10	40	773
		31	594	80	858				
		35	603	90	914				
		40	610	100	959				
		0	825	50	768				
		5	813	54	773				
93	$A - SrBr_2$	20	772	66,6	803	50	10	50	873
93	B — LiBr	30	736	85	865	30	10	30	073
		34	720	100	916				
		40	744						
		0	585	50	464				
		10	535,5	60	457,6				
	A — NiNO ₃	20	489	65	449				
94	$B - RbNO_3$	22	479	70	567	40	10	40	523
	2 101(0)	32,5	424	80	598				
		36	438	90	519,5				
		40	449,5	100	527				
		0	708	50	767				
0.5	A - MgC12	5	698	66,6	796	50	10	50	022
95	B — TiC1	15	682	75	658	50	10	50	923
		28 33,3	635 685	90 100	950 991				
		0	991	100	991				
		17,5	868	36,2	759				
		22,7	800	37,5	784				
		23,7	764	43,8	816				
	$A - MgCl_2$	25,9	746	50	823				
96	B — RbCl	28	736	58,1	809	40	10	50	873
	B Roei	29	732	65	783				
		30,4	743	68,3	821				
		33,1	749	78,7	898				
		35,5	754	100	984				
		0	999	45	793				
		15	879	50	799				
		22	813	55	797				
97	A - MgC12	27	749	65	755	30	10	40	873
91	B — RbCl	30	741	68	733	30	10	40	8/3
		32	733	70	743				
		35	713	80	803				
		40	767	100	923				
		0	1349	63,9	1200				
		10	1308	66,8	1203				
98	$A - MgSO_4$	20	1236	71	1193	50	10	30	1273
, 0	$B - K_2SO_4$	30	1123	75,3	1177				
		40	1019	82,3	1247				
		50	1103	100	1397				

ачи		Температура		Mozzawa	Температура начала	Содержание вещества А			Темпе-
№ задачи	Системы	Молярная доля А, %	начала кристаллизации T , К	Молярная доля А, %	начала кристаллизации, T , K	a, %	c, %	d, %	ратура T_1 , К
1	2	3	4	5	6	7	8	9	10
99	A — PbC1 ₂ B — TiC1	0 10 15,5 20 25 30 36,5 40	708 679 661 675 680 676 650	50 60 66,6 70 75 80 90 100	680 705 708 707 700 720 752 773	50	10	50	723
100	A — NaCl B — ZnCl ₂	0 5 10 15 25 27 30	595 589 577 573 543 535 569	35 46 52,5 58 67,7 100	623 683 769 813 882 1073	45	10	20	723

Тема 4. Задачи 130—157

- 130. Водный раствор, содержащий 0,225 моль/л NaOH, замерзает при –0,667 °C. Определите кажущуюся степень диссоциации NaOH в этом растворе, если криоскопическая постоянная воды равна 1,86. Плотность раствора принять равной 1.
- 131. Раствор, содержащий 0,81 г углеводорода $H(CH_2)_n$ H и 190 г бромистого этила, замерзает при -9,47 °C. Температура замерзания бромистого этила -10 °C, криоскопическая постоянная 12,5 К·кг/моль. Рассчитайте молярную массу углеводорода.
- 132. Рассчитайте температуру замерзания водного раствора, содержащего 50,0 г этиленгликоля в 500 г воды.
- 133. Давление насыщенного пара H_2O при 40 °C равно 7375,9 Па. Вычислите давление пара раствора, содержащего 10 г глицерина на 400 г H_2O .
- 134. Давление насыщенного пара H_2O при 50 °C равно 12 334 Па. Вычислите давление пара раствора, содержащего 0,01 моль нелетучего вещества 200 г H_2O .
- 135. Какова должна быть массовая доля глицерина $C_3H_8O_3$ в водном растворе, чтобы давление пара раствора было на 2 % ниже давления пара чистой воды?
- 136. Вычислите давление пара 5%-го раствора сахара $C_{12}H_{22}O_{11}$ в воде при $100~^{\circ}C$ и процентное содержание глицерина в водном растворе, давление пара которого равно давлению пара 5%-го раствора сахара.
- 137. Определите температуру кипения раствора 10 г глюкозы в 90 г H_2O . Эбулиоскопическая константа для воды 0,512.

- 138. Удельная теплота испарения воды при температуре кипения равна $2253,02\cdot10^3$ Дж/кг. Определите температуру кипения водного раствора, содержащего 0,08 моль нелетучего растворенного вещества в 200 г H_2O .
- 139. Давление пара раствора, содержащего 13 г нелетучего растворенного вещества в 100 г воды при 28 °C равно $0.0365\cdot10^5$ Па. Рассчитайте молекулярную массу растворенного вещества, предполагая, что раствор идеальный. Давление пара воды при 28 °C равно $0.0374\cdot10^5$ Па.
- 140. 68,4 г сахарозы (M = 342 г/моль) растворено в 1000 г H_2 О. Плотность раствора при 20 °C равна $1,024\cdot10^5$ кг/м. Давление пара чистой воды при 20 °C равно $0,0231\cdot10^5$ Па. Определите давление пара над раствором.
- 141. При 25 °C давление паров воды равно $0.0316 \cdot 10^5$ Па. Чему равно давление паров воды над раствором, содержащим 10 г мочевины в 200 г H_2O ?
- 142. Сколько граммов глицерина необходимо добавить в 0.5 кг H_2O , чтобы раствор не замерзал до -0.5 °C. Криоскопическая постоянная воды равна 1.86.
- 143. Водный раствор этилового спирта, содержащий 8,74 г спирта на 1000 г H_2O , замерзает при -0,354°C. Определите молекулярную массу спирта в этом растворе. Криоскопическая постоянная воды равна 1,86.
- 144. Раствор, содержащий 1,632 г трихлоруксусной кислоты в 100 г бензола, отвердевает на 0,350 °C ниже, чем бензол. Определите, имеет ли место диссоциация или ассоциация трихлоруксусной кислоты в бензольном растворе и в какой степени. Криоскопическая постоянная бензола равна 5,12.
- 145—157. По данным, приведенным в табл. 4, для водных растворов рассчитать величину, указанную в последнем столбце табл. 4 (учесть, что криоскопическая постоянная воды $K = 1,86~\mathrm{K\cdot kr/moлb}$, эбулиоскопическая постоянная воды $E = 0,52~\mathrm{K\cdot kr/monb}$). Обозначения m_A , г и m_H2O , г соответственно, массы (в граммах) двух компонентов, составляющих раствор: растворенного вещества A и воды.

Таблица 4

No	Вещество А	$m_{\rm A}$, Г	$m_{ m H_2O}$, г	Искомая величина
145	Этанол С ₂ Н ₆ О	4,6	100	
146	Метанол CH ₄ O	6,4	200	
147	Пропиловый спирт C ₃ H ₈ O	0,86	100	
148	Сахароза C ₁₂ H ₂₂ O ₁₁	1,17	200	Температура
149	Глюкоза $C_6H_{12}O_6$	1,80	100	замерзания $T_{\scriptscriptstyle 33M}$
150	Γ лицерин $C_3H_8O_3$	0,90	100	
151	Мочевина CH ₄ N ₂ O	1,20	200	
152	Тиомочевина CH ₄ N ₂ S	1,90	200	
$N_{\underline{0}}$	$\Delta T_{ ext{ iny KuII}}$	m_{A} , Γ	$m_{\mathrm{H_2O}}$, г	Искомая величина
153	0,052	3,42	100	
154	0,052	3,60	200	
155	0,260	4,60	200	Mолярная масса M
156	0,052	0,90	100	
157	0,104	2,40	200	

Список рекомендуемой литературы

- 1. *Коровин, Н. В.* Общая химия: учеб. для технич. направ. и спец. вузов / Н. В. Коровин. М.: Высш. шк., 2007. 556 с. (также предыдущие издания).
- 2. Γ линка, H. J. Общая химия : учеб. пособие для вузов / H. J. Γ линка. M. : Интеграл-ПРЕСС, 2008. 728 с. (также предыдущие издания).
- 2. *Киреев, В. А.* Краткий курс физической химии / В. А. Киреев. М. : Высш. шк., 1978. 624 с.
 - 3. *Киреев*, В. А. Курс физической химии / В. А. Киреев. М.: Химия, 1975. 776 с.

ПРИЛОЖЕНИЕ

Таблица 1 **Термодинамические величины простых веществ и соединений**

		-	
Вещество в газообразном	$\Delta H^0_{f,298},$ к $Д$ ж/моль	S^0_{298} , Дж/(моль·К)	$C^0_{ ext{P},298},$ Дж/(моль \cdot К)
состоянии	KZJK/WOJIB	дж/(моль к)	дж/(моль-к)
Br ₂	30,92	245,35	36,07
Cl_2	0	223,0	33,84
F_2	0	202,9	31,32
H_2	0	130,6	28,83
I_2	62,24	260,58	36,9
N_2	0	191,5	29,10
O	249,18	160,95	21,90
O_2	0	205,03	29,36
S_2	129,1	227,7	32,47
CO	-110,5	197,4	29,15
CO_2	-393,51	213,6	37,13
$COCl_2$	-223,0	289,2	60,67
CS_2	115,3	237,8	45,65
HBr	-35,98	198,40	29,16
HC1	-92,30	186,70	29,16
HF	-268,61	173,51	29,16
HI	25,94	206,30	29,16
H_2O	-241,84	188,74	33,56
H_2S	-20,15	205,64	33,93
NH_3	-46,19	192,51	35,65
NO	90,37	210,62	29,83
NO_2	33,89	240,45	37,11
N_2O_4	9,37	304,3	78,99
NOCl	52,59	263,5	39,37
SO_2	-296,9	248,1	39,87
SO_2Cl_2	-358,7	311,3	77,4
SO_3	-395,2	256,23	50,63
CH_4	-74,85	186,19	35,79
C_2H_2	226,75	200,8	43,93
C_2H_4	52,28	219,4	43,63
CH₃COH	-166,0	264,2	54,64
C_2H_5OH	-235,3	282,0	73,6
CH_3F	-247,0	222,8	37,40
CH ₃ Cl	-82,0	233,5	40,71
CH_3Br	-35,6	245,8	42,4
CH_3I	20,5	253,0	44,1
CHCl ₃	-100,4	295,6	65,7
CCl_4	-106,7	309,7	83,4
C_2H_5F	-297,0	364,8	58,6
C_2H_5Cl	105,0	274,8	62,3
CH_3NH_2	-28,03	241,6	51,7

Окончание прил.

Таблица 2 Стандартные теплоты (энтальпии) образования ΔH_{298}^0 некоторых веществ

Вещество	Состояние	ΔH_{298}^0 , кДж/моль	Вещество	Состояние	$\Delta H_{f,298}^0$, кДж/моль
C_2H_2	Γ	+226,75	СО	Γ	-110,52
CS_2	Γ	+115,28	CH ₃ OH	Γ	-201,17
NO	Γ	+90,37	C ₂ H ₅ OH	Γ	-235,31
C_6H_6	Γ	+82,93	H_2O	Γ	-241,83
C_2H_4	Γ	+52,28	H_2O	Ж	-285,84
H_2S	Γ	-20,15	NH ₄ Cl	К	-315,39
NH_3	Γ	-46,19	CO_2	Γ	-393,51
CH_4	Γ	-74,85	Fe_2O_3	К	-822,10
C_2H_6	Γ	-84,67	Ca(OH) ₂	К	-986,50
HC1	Γ	-92,31	Al_2O_3	К	-1669,80

План выпуска учеб.-метод. документ. 2013 г., поз. 19

Начальник РИО М. Л. Песчаная Зав. редакцией О. А. Шипунова Редактор Р. В. Худадян Компьютерная правка и верстка А. Г. Сиволобова

Подписано в свет 08.04.2013. Гарнитура «Таймс». Уч.-изд. л. 0,7. Объем данных 302 Кбайт.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный архитектурно-строительный университет» Редакционно-издательский отдел 400074, Волгоград, ул. Академическая, 1 http://www.vgasu.ru, info@vgasu.ru